Measurements of the low mass dielectron spectra at J-PARC

Satoshi Yokkaichi
(RIKEN Nishina Center)

- Physics: chiral symmetry in matter
- results of KEK-PS E325
- J-PARC E16 experiment
 - goal
 - Key issues of design
 - R&D status
Chiral symmetry in dense matter

- Origin of hadron mass: spontaneous breaking of chiral symmetry
- In hot/dense matter, chiral symmetry is expected to be restored
 - hadron modification is also expected
 - many theoretical predictions...
Hatsuda and Lee, PRC46(92)R34, PRC52(95)3364
linear dependence on density
\[m^*/m_0 = 1 - k \rho/\rho_0 \]

mass decreasing
- 16(\pm 6)\% for \(\rho/\omega \)
- 0.15(\pm 0.05)y
 = 2\sim 4\% for \(\phi \)
 (for \(y=0.22 \))
at the normal nuclear density

Oset and Lamos
NPA 679 (01) 616

\(\phi \) mass shift
< 1\%
width broadening
x5 (22MeV)
at 1020MeV, at \(\rho_0 \)
E325 observed the meson modifications

- in the e^+e^- channel
- below the ω and ϕ, statistically significant excesses over the known hadronic sources including experimental effects
E325 : interpretation

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 - k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2(\rho/\rho_0)$

- consistent with the predictions

\[
k_1 = 0.034^{+0.006}_{-0.007}
\]

\[
k_2^\text{tot} = 2.6^{+1.8}_{-1.2}
\]

- 3.4% mass reduction (35MeV)
- 3.6 times width broadening (16MeV)
 at ρ_0
E325 : interpretation

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 - k_1 (\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
 - consistent with the predictions

\[k_1 = 0.034^{+0.006}_{-0.007} \]
\[k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2} \]

- 3.4% mass reduction (35MeV)
- 3.6 times width broadening (16MeV)
 at ρ_0
From “mass modification” to physics

- Mass shape modification of vector mesons in medium looks to be established by many experimental results (E325/CLAS-G7/TAPS at the lower energy, NA60/CERES in HI collision)
 - statements contradict each other
 - mass dropping and/or width broadening
 - depending on the interpretation models to include the matter size effect
 - physics
 - only hadronic effects? or chiral restoration?

- Next step in the invariant-mass approach
 - put an emphasis on $\phi \rightarrow e^+e^-$: less ambiguous
 - ρ's complicated shape, $\rho-\omega$ interference, ρ/ω ratio, etc.
 - systematic study of the shape modification
 - nuclear matter size dependence: larger/smaller nuclei, collision geometry
 - momentum dependence: predicted, but not measured yet
 - check the validity of the interpretation models
dispersion relation (mass VS momentum)

- S.H.Lee (PRC57(98)927) \(m^*/m_0 = 1 - k \rho/\rho_0 \)
 - \(\rho/\omega \) : \(k=0.16 \pm 0.06 + (0.023 \pm 0.007)(p/0.5)^2 \)
 - \(\phi \) : \(k=0.15(\pm 0.05)\times y + (0.0005 \pm 0.0002)(p/0.5)^2 \)
 - for \(p<1\text{GeV/c} \)

- Kondratyuk et al. (PRC58(98)1078) : \(\rho \) meson

- Post & Mosel(NPA699(02)169) : \(\rho \) meson
---J-PARC E16 experiment---
Low-mass dielectron measurement

- 2007/3: stage1 (physics) approval
- Detector R&D is on going

Collaboration
RIKEN S. Yokkaichi, H. En’yo, F. Sakuma
U-Tokyo K. Ozawa
CNS, U-Tokyo H. Hamagaki
Hiroshima-U K. Shigaki
KEK A. Kiyomichi, M. Naruki, R. Muto,
S. Sawada, M. Sekimoto
Kyoto-U K. Aoki

Proposal revised version 1 (2006 June 7) is located on:
J-PARC E16 experiment

- Same concepts as KEK-PS E325
 - thin target (0.1% interaction) / primary beam (~10^{10} /sec)/ slowly moving vector mesons in the ee channel
- **Main goal**: collect \(\sim 1\text{-}2 \times 10^5 \phi \rightarrow \text{ee} \) for each target in 5 weeks
 - \(\sim 100 \) times as large as E325
 - new nuclear targets: proton (CH\textsubscript{2} -C subtraction), Pb
 - collision geometry for Pb target (by multiplicity)
- **systematic study** of the velocity & nuclear size dependence of excess ('modified' component)
 - check the interpretation models
 - extract the dispersion relation (momentum dependence of mass)
- mass resolution: keep \(\sim 10 \) MeV
- \(\rho,\omega \) and \(J/\psi \) can be collected at the same time
High momentum Beamline

30/50GeV proton beam (upto 10^{12} /sec)
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess
- systematic study: all the data should be explained the interpretation model

- establish the modification

NP08 08Mar06 S.Yokkaichi
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for \(\phi \) (slow/Cu) has significant excess
- systematic study: all the data should be explained the interpretation model

- establish the modification
- check the interpretation model with shape analysis for each histogram
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H. Lee ($p<1\text{GeV}$)
- current E325 analysis neglects the dispersion (limited by the statistics)
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee ($p<1$ GeV)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter $k_1(p)$, to all nuclear targets in each momentum bin

![Graph showing dispersion relation](image)

- ϕ mass (1020)
- ~ 35 MeV
- E325
- E16 (for example...)

$N_{\text{excess}} = N_{\text{excess}}^{(N)}$
Key issues/digits for the spectrometer design

- electron ID: $10^{-4} \pi$ rejection
 - suppress the trigger rate and the background from misidentified pions
- low material: 0.5% X_0 for each target, 4% X_0 for trackers
 - suppress the background from the conversion electron pairs, reduce a tail due to the bremsstrahlung
- high rate capability: 10MHz interactions at targets
 - to collect high statistics in use of primary beam ($\sim 10^{10} /\text{sec}$)
- high mass resolution: less than 10 MeV (rms)
 - to see the modification
 - less than 200um of position resolution of the trackers
experimental effects on the BW shape (E325)

• E325 Detector Sim.
 - target material is negligible for ~0.5% radiation length (X_0)
 - detectors: up to 4.5% X_0 in the tracking region
experimental effects on the BW shape (E325)

- E325 Detector Sim.
 - target material is negligible for ~0.5% radiation length (X_0)
 - detectors: up to 4.5% X_0 in the tracking region

- In the case of the thick targets: 1g/cm2
 - bremsstrahlung in target is so large for the Cu case
mass resolution requirement

- mass resolution should be kept less than ~10MeV

(model calc. for the Cu target)
Proposed spectrometer

- Spectrometer Magnet: reuse E325's
 - remodeling the pole / repairing the coil
 - stronger field for compact detector size
- GEM (Gas electron multiplier) Tracker
 - 0.7mm pitch strip readout
- Two-stage Electron ID ($10^{-4} \pi$ rejection)
 - Hadron Blind Detector (Gas Cherenkov)
 - GEM+Csl photocathode
 - hexagonal pad readout (~30mm φ)
 - Leadglass EMC: reuse of TOPAZ
- ~70K Readout Channels (in 26 segments)
 - cf. E325: 3.6K, PHENIX:~300K
- Cost: ~$5M (including ~$2M electronics)
 - cf. E325: $2M not including electronics
Prototype module is under construction

- the spectrometer consists of 26 modules in the conceptual design
Prototype module is under construction

- Items should be tested
 - thin readout boards:
 - Kapton 25um, Cu 4um
 - double sided (x,y) 350um pitch
 - domestic large GEM (300mm x 300mm)
 - alignment of the three GEM chambers
- Parts will be delivered till March 31, test will start in April
Delivered parts (Feb.29)

chamber frames

largest thin read-out board (300x300mm)
Detector R&D status

- GEM: domestic products works well
 - high gain GEM / larger size (300mm x 300mm)

- HBD (Gas Cherenkov using GEM + CsI photocathord)
 - PHENIX prototype / working model
 - In Japan:
 - CsI photocathord (Hamamatsu)
 - CF$_4$ operation
 - Beam test @ HiSOR (Hiroshima-U)
 - long term operation
 - GEM Tracker for high rate
 - Triple GEM w/ 2D double-sided strip read-out board (@U-Tokyo)
 - low material strip read-out board
 - prototype module of the spectrometer
 - Tracker + HBD in real-size

already tested on going construction -> test in JFY2008 (2007/08 Grant-in-Aid)
Summary

- Vector meson measurements in e^+e^- channel at J-PARC E16
 - to investigate the chiral symmetry in dense hadronic matter
- 30 (or 50) GeV primary proton beam ($\sim 1 \times 10^{10}$/sec)
 - especially collect $\sim 10^5 \phi \rightarrow e^+e^-$ for each target in ~ 5 weeks (800 hours)
 - operation: 100 times as large as KEK-PS E325's statistics
- New spectrometer using new technology (GEM tracker/HBD)
 - R&D is on going at U-Tokyo and RIKEN w/ grant-in-aid
 - Spectrometer design should be finalized in 2008
- Impact of the experiment
 - systematic study of the vector meson mass modification in various size (0~10fm) of dense matter (nuclear matter)
 - momentum dependence of in-medium mass (dispersion relation)
 - provide the systematic data which motivate to develop new theoretical calculations, including interpretation in the real nuclear matter
Backup slides...
GEM Tracker to cope with high rate

- Expected single rate is too high to use DC
 - origin: beam halo and/or from the interactions at the target
- E325 experience x 10 times
 - 1.8 MHz @ 6° (20mm from the beam) /3.5mm x100mm cell of DC @r=200mm
 - 5KHz/mm² → GEM tracker can be operated (cf. COMPASS exp.)
 - 400KHz @ 60° /4mm x100mm @r=200mm
 - marginal rate for DC operation
- E16
 - Fine segment to cope with the high rate
 - position resolution 0.2mm to keep the mass resolution
 - → GEM Tracker w/ 0.7mm pitch readout
HBD (Hadron Blind Detector)

- HBD : Thr. type Gas Cherenkov Counter
 - CsI photocathode : UV photon sensitive
 - Triple GEM with pad readout
 - CF$_4$ is a radiator and amplification gas
 - Ionized electrons are collected by mesh
 - photoelectrons are amplified by 3 stages
 - ionized electrons are amp. by only last 2 stages
 - → can detect only particles with cherenkov photon.
 - (1/100 of pion rejection)
- Joint development with Weitzman Institute
 - originally for PHENIX upgrade plan
- Cover large area with no mirror
- 10cm x 10cm of Trigger tile : effectively fine segmented
 - essential to trigger the e$^+e^-$ pair from the vector meson

Concept of HBD

- CF$_4$ radiator
- Mesh
- CsI photocathode
- GEM
- Pads
- E$_{GEM}$
- E$_{transfer}$
- E=0
To collect high statistics

- For the statistics 100 times as large as E_{325}, a new spectrometer is required.
 - To cover larger acceptance: $x \sim 5$
 - Higher energy beam ($12 \rightarrow 30/50$ GeV): $x \sim 2$ of production
 - Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)): $x \times 10$ (→ 10MHz interaction on targets)

Geometrical (horizontal & vertical) coverage of the spectrometer
New nuclear targets with larger statistics

- Smaller nuclear target:
 - proton as reference ($\text{CH}_2 - \text{C}$ subtraction)
 - LH target cannot be used because of the materials

- Larger nuclear target as Pb
 - larger nuclear matter
 - collision geometry (impact parameter) study using multiplicity
 - larger radiation length for heavier target
 → more thinner foil target to keep S/N
 - high statistics capability is required.
Schedule

• (already funded ~ $0.15M)
 - 2007 - 8:
 • prototype spectrometer module
test/design finalize
• (budget dependent ~ $5M)
 - 2008-9:
 • production start
 - 2009-10
 • spectrometer construction at the
counter hall
 - 2011
 • ready for 30GeV proton beam
Cost estimation

<table>
<thead>
<tr>
<th>Detector</th>
<th>element</th>
<th>description</th>
<th>cost [Yen]</th>
<th>cost [M Yen]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEM Tracker</td>
<td>Frame</td>
<td></td>
<td>820k</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>GEM foil (10x10 [cm²] foil)</td>
<td></td>
<td>20 k x (1+4+9) x 3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>readout strip board (10x10 [cm²])</td>
<td></td>
<td>100 k x 14</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>electronics</td>
<td></td>
<td>3 k/ch x (800 x 2) chs</td>
<td>140</td>
</tr>
<tr>
<td>Cerenkov Counter</td>
<td>Frame</td>
<td></td>
<td>500k</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>GEM foil (11 x 11 [cm²])</td>
<td></td>
<td>20 k x 25 x 3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Cst coat</td>
<td></td>
<td>40 k x 25 foils</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>readout pad board electronics</td>
<td></td>
<td>3 k/ch x 460 chs</td>
<td>38</td>
</tr>
<tr>
<td>Outside Tracker</td>
<td>Frame</td>
<td></td>
<td>500k</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>readout strip board electronics</td>
<td></td>
<td>20 k x 1000 chs</td>
<td>33</td>
</tr>
<tr>
<td>subtotal</td>
<td></td>
<td></td>
<td>13.5M</td>
<td></td>
</tr>
<tr>
<td>EM Calorimeter</td>
<td>lead glass and PMT</td>
<td>reuse from TRISTAN/TOPAZ</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frame</td>
<td>3 k/ch</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>electronics</td>
<td></td>
<td>2 (650 chs)</td>
<td></td>
</tr>
<tr>
<td>Magnet</td>
<td>Return yoke</td>
<td>reuse from E325</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pole piece</td>
<td>transfer from KEK</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coil</td>
<td>modification</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>repair</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>590</td>
<td></td>
</tr>
</tbody>
</table>
beam energy and spectrometer acceptance

A) Reuse of E325 spectrometer
B) Proposed larger acceptance spectrometer

expected ϕ yield for two options (using JAM)

<table>
<thead>
<tr>
<th>beam energy</th>
<th>12 GeV</th>
<th>30 GeV</th>
<th>50 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ production CS (p+Cu)</td>
<td>1.0 mb</td>
<td>3.0 mb</td>
<td>5.1 mb</td>
</tr>
<tr>
<td>detector acceptance</td>
<td>case A</td>
<td>8.8%</td>
<td>6.0%</td>
</tr>
<tr>
<td>case B</td>
<td>45%</td>
<td>31%</td>
<td>23%</td>
</tr>
<tr>
<td>normalized yield by E325</td>
<td>case A</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>case B</td>
<td>5.1</td>
<td>10.0</td>
<td>12.7</td>
</tr>
</tbody>
</table>

10 times can be collected by larger acceptance and beam energy (both 30 and 50 GeV are acceptable)

Further, for 10 times higher intensity beam (10^{10}) (i.e. high interaction rate : 10MHz) to collect higher statistics ($10^5 \phi$ =100 times of E325), new spectrometer is required.
KEK-PS E325

- to observe the vector meson modification in the cold nuclear matter at the normal nuclear density

- $12\text{GeV} \ p + \text{C/Cu} \rightarrow \rho/\omega/\phi + \text{X}$ (\(\rho/\omega/\phi \rightarrow \text{e}^+\text{e}^-, \phi \rightarrow \text{K}^+\text{K}^-\)), $1<p<3\text{GeV}/c$ for ϕ

- run 1997-2002
History of E325

- 1993 proposed
- 1994 R&D start
- 1996 construction start
- '97 data taking start
- '98 first ee data
 - PRL86(01)5019 \(\rho / \omega \) (ee)
- 99,00,01,02...
 - x100 statistics
 - PRL96(06)092301 \(\rho / \omega \) (ee)
 - PRC74(06)025201 \(\alpha \) (ee)
 - PRL98(07)042501 \(\phi \) (ee)
 - PRL98(07)152302 \(\phi \) (KK),\(\alpha \)
- '02 completed
- spectrometer paper
 - NIM A457(01)581
 - NIM A516(04)390

E325 spectrometer
located at KEK-PS EP1-B primary beam line