J-PARC E16
Vector meson in nuclear matter

Satoshi Yokkaichi
(RIKEN Nishina Center)

• physics motivation
• dilepton measurements in the world
• E16 status and plan

Collaboration
RIKEN S. Yokkaichi, K. Aoki, Y. Aramaki, H. En'yo, J. Kanaya, F. Sakuma, T.N. Takahashi
KEK K. Ozawa, M. Naruki, R. Muto, S. Sawada, M. Sekimoto
U-Tokyo Y.S. Watanabe, Y. Komatsu, S. Masumoto, A. Takagi, K. Kanno, W. Nakai
CNS, U-Tokyo H. Hamagaki
Hiroshima-U K. Shigaki
JASRI A. Kiyomichi
Origin of Mass (Higgs)

Big Bang \[10^{10}\text{[sec]}/1\text{P}[\text{K}]\]

quark mass

- 0 MeV
- 3 MeV

“resistance”

schematic diagram of vacuum

- Origin of lepton and quark mass: Higgs
Origin of Mass (QCD)

- Origin of lepton and quark mass: Higgs
- Origin of quark and hadron mass: spontaneous breaking of chiral symmetry, originally proposed by Nambu
 - Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter
Vector meson measurements in the world

- **HELIOS/3** (ee, μμ) 450GeV p+Be / 200GeV A+A
- **DLS** (ee) 1 GeV A+A
- **CERES** (ee) 450GeV p+Be/Au / 40-200GeV A+A
- **E325** (ee,KK) 12GeV p+C/Cu
- **NA60** (μμ) 400GeV p+A/158GeV In+In
- **PHENIX** (ee,KK) p+p/Au+Au
- **HADES (*)** (ee) 1-4 GeV p+Au/ 1-2GeV A+A
- **CLAS-G7 (*)** (ee) 1~2 GeV γ+A
- **J-PARC E16** (ee) 30/50GeV p+A
- **HADES/FAIR** (ee) 2~8GeV A+A
- **CBM/FAIR** (ee) 20~30GeV A+A
- **TAGX** (ππ) ~1 GeV γ+A
- **STAR** (ππ,KK) p+p/Au+Au
- **LEPS** (KK) 1.5~2.4 GeV γ+A
- **CBELSA/TAPS(*)** (π⁰γ) 0.64-2.53 GeV γ p/Nb
- **ANKE** (KK) 2.83 GeV p+A

published/ 'modified' published/ 'unmodified' running/in analysis future plan as of 2012/Mar
Dilepton spectrum measurements in the world

NA60: ρ width broadening
PHENIX: enhancement (cannot be explained yet)

Chiral restoration at High-T is not confirmed yet

PHENIX

CERES/NA60

HADES/CBM

DLS/HADES

E325/E16

TAPS/CLAS

E325: ρ/ω mass dropping
φ mass dropping and broadening

CLAS-g7: ρ broadening

HADES: low-mass enhancement

Partial chiral restoration at ρ₀ is measured w/
the deeply bound pionic atom

Open question:
Observed hadron modifications are
signature of the chiral restoration / evidence
of the QCD mass generation?
Experimental methods: pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the ϕ modification?
 - proton induced: better S/N than the HI collisions
 - large stat. using a high intensity beam: cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate
Expected Invariant mass spectra in e^+e^-

- smaller FSI in e^+e^- decay channel

- double peak (or tail-like) structure:
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

longer-life meson (ω & ϕ) cases: Schematic picture

1) decay inside nuclei
2) decay outside nuclei

expected to be observed
KEK-PS E325

- 12GeV p+A (C/Cu) → ρ, ω, φ in the e⁺e⁻ channel

- below the ω and φ peaks, statistically significant excesses over the known hadronic sources including experimental effects

- interpreted: mass dropping 9.2% (ρ, ω), 3.4% (φ)

PRL98(07)042501

PRL96(06)092301

ω (783)

Cu

fit result

φ (1020)

Cu

βγ <1.25

bkg subtracted

PRL98(07)042501

[GeV/c²]
1) excess at the low-mass side of ω

To reproduce the data by the fitting, we have to exclude the excess region: 0.60–0.76 GeV

2) ρ-meson component seems to be vanished!
e^+e^- spectra of ϕ meson (divided by $\beta\gamma$)

- $\beta\gamma < 1.25$ (Slow)
- $1.25 < \beta\gamma < 1.75$
- $1.75 < \beta\gamma$ (Fast)

only slow/Cu is not reproduced in 99% C.L.
Discussion: modification parameters

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point: uniform for ϕ meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight: linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 - k_1 (\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
 - consistent result with the predictions by Hatsuda & Lee (k_1), Oset & Lamos (Γ)

$k_1 = 0.034^{+0.006}_{-0.007}$
$k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}$

For ϕ, 3.4% mass reduction (35MeV) 3.6 times width broadening (15MeV) at ρ_0
Vector meson measurements in Heavy Ion Collision

- CERES: (PLB666(2008)425)
 - “broadening by hadronic effect” is favored

- "raw data"
 - resonance subtracted
 - bkg subtracted
Vector meson measurements in HIC

- **CERES** : e^+e^- (EPJC 41('05)475)
 - anomaly at lower region of ρ/ω
 - in A+A, not in p+A
 - relative abundance is determined by their statistical model

- **NA60** : (PRL96(06)162302)
 - $\rho \rightarrow \mu^+\mu^-$:
 - width broadening
 - 'BR scaling is ruled out'

\[\text{bkg subtracted}\]

\[\text{bkg & resonance subtracted}\]
Vector meson measurements in Heavy Ion Collision

- PHENIX : (arXiv:0706.3034v1,0912.0244v1)
 - 200GeV /u Au+Au → e^+e^-
 - enhancement below \(\omega \)
 - cannot reproduced by any model at low pT
 - at high pT, thermal photons reproduce

![Graph of vector meson measurements in Heavy Ion Collision](image)

bkg subtracted
HADES

- lower energy HI collisions: \(A+A \rightarrow e^+e^- \)
- DLS data is confirmed, and the puzzle in C+C is resolved by (pp+np)[PLB690(10)118]
- However, Ar+KCl have enhancement over the (pp+np) estimation [PRC84(11)014902]

\[
\begin{align*}
\frac{1}{N_0} \frac{dN_{\text{corr}}}{dM_{ee}} [1/(\text{GeV/c}^2)]
\end{align*}
\]

- \(^{12}\text{C}^{12}\text{C} \) 1 AGeV
- \(\frac{1}{2} (\text{pp+np}) \) 1.25 GeV
 \[\alpha_{e^+e^-} > 9^\circ\]

\[
\begin{align*}
\frac{1}{N_0} \frac{dN_{\text{corr}}}{dM_{ee}} [1/(\text{GeV/c}^2)]
\end{align*}
\]

- Ar + KCl 1.76 AGeV
- \(\frac{1}{2} (\text{pp + np}) \) 1.25 AGeV

\([\text{arXiv}:1011.5424v2]\)
HADES 3.5GeV pp and p+Nb

- Selecting slower mesons, an excess is seen below the ω peak in the larger nuclei data (preliminary)

HADES p+p vs p+Nb @ 3.5 GeV(E_{kin}/u)

- strong difference in spectral function for slow pairs in the vm region

(P.Salabura, cracow)
J-PARC E16
J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e^+e^- invariant mass spectrum

- A 30 GeV primary proton beam (10^{10}/spill) / 5 weeks of physics run to collect ~$10^5 \phi \rightarrow e^+e^-$ for each target

- Confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

Proposed exp. E16

- Nuclear matter size dependence of mass modification are measured

Precedent exp.(KEK-PS E325)

- ϕ-mass is modified in large nuclei for slowly moving mesons... consistent with the prediction based on the QCD sum rule

ϕ mass (1020)

- Measured by E325 $\Delta M \sim 35$ MeV

- Expected

- Momentum dependence
To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance: $x \sim 5$
 - Higher energy beam ($12 \rightarrow 30/50$ GeV): $x \sim 2$ of production
 - Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)): $x \times 10$ (→ 10MHz interaction on targets)
 - To cope with the high rate, new detectors (GEM Tracker & HBD) are required.

Proposed Spectrometer

26 detector modules
High-p line in the Hadron hall

- 1x10^10 for E16 (current beam power is enough, only 1% of A-line)

- 3 years plan of the construction: budget requested by KEK to MEXT
\(\phi\)-mass modification at \(\rho_0\):

- (vacuum value: \(m(0)=1019.456\text{MeV}, \Gamma(0)=4.26\text{MeV}\))
 \[m(\rho)/m(0) = 1 - k_1 (\rho/\rho_0), \quad \Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)\]
- determined by E325 (PRL98(2007)042581)
 \[\Delta m: -35 (28\sim41) \text{ MeV}, \quad \Gamma: 15 (10\sim23) \text{ MeV}\]
- Hatsuda, Lee [PRC46(1992)34] \(QCD\) sum rule
 \[\Delta m: -12\sim44 \text{ MeV} \quad (k=(0.15\pm0.05)y, y=0.12\sim0.22), \quad \Gamma: \text{not estimated}\]
 \[\Delta m: < -10 \text{ MeV}, \quad \Gamma: \sim45 \text{ MeV}\]
 \[\Delta m: < -10 \text{ MeV}, \quad \Gamma: \sim22 \text{ MeV for } m=1020\text{MeV}, \sim16\text{MeV for } m=985\text{ MeV}\]
- Cabrera and Vacas [PRC 67(2003)045203] OR01+ hadronic
 \[\Delta m: -8 \text{ MeV}, \quad \Gamma: \sim30 \text{ MeV for } m=1020\text{MeV}\]

\[k_1 = 0.034^{+0.006}_{-0.007}\]
\[k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}\]
expected shape w/ various parameters

<table>
<thead>
<tr>
<th></th>
<th>E325</th>
<th>OR-01</th>
<th>KWW-98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm</td>
<td>−35 MeV</td>
<td>−10 MeV</td>
<td>−35 MeV</td>
</tr>
<tr>
<td>Γ</td>
<td>15 MeV</td>
<td>15 MeV</td>
<td>15 MeV</td>
</tr>
</tbody>
</table>

- Can distinguish $\Delta m = -35$ or -10 MeV
 - $\Gamma = 15$ or 50 MeV

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Pb</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>βγ</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Γ</td>
<td>15 MeV</td>
<td>15 MeV</td>
<td>50 MeV</td>
<td>50 MeV</td>
</tr>
</tbody>
</table>

- Can distinguish $\Delta m = -10$ MeV
 - $\Gamma = 15$ or 50 MeV
expected shape w/ various parameters

<table>
<thead>
<tr>
<th></th>
<th>E325</th>
<th>OR-01</th>
<th>KWW-98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm</td>
<td>-35 MeV</td>
<td>-10 MeV</td>
<td>-35 MeV</td>
</tr>
<tr>
<td>Γ</td>
<td>15 MeV</td>
<td>15 MeV</td>
<td>50 MeV</td>
</tr>
<tr>
<td>Δm</td>
<td>-35 MeV</td>
<td>-10 MeV</td>
<td>-10 MeV</td>
</tr>
<tr>
<td>Γ</td>
<td>50 MeV</td>
<td>50 MeV</td>
<td>50 MeV</td>
</tr>
</tbody>
</table>

Cu

- $\beta \gamma < 0.5$
- $0.5 < \beta \gamma < 1.25$

Pb

- $\beta \gamma < 0.5$
- $0.5 < \beta \gamma < 1.25$

Blue: decays inside the half-density radius of nuclei in the MC
momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest ($p=0$)
 - extrapolation to $p=0$ if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

- Weldon (PRD40(89)2410)

- Harada & Sasaki (PRC80(09)054912)

- Kondratyuk et al. (PRC58(98)1078)
Schedule

- **2007**: stage1 approval
- **2008-2010**: development of prototype detectors w/ Grant-in-Aid (2007-8, 2009-13)
- **2011**: additional parts of the spectrometer magnet, R/O circuit development
 - 1st module of production type (GT and HBD)
 - test using pion beam @ J-PARC
- **2012**: magnet re-construction
 - all the detectors are installed in the magnet
 - production of the detectors/circuits
- **2013**: staged goal of the spectrometer construction (w/ 8 detector modules): ready for the beam
 - (beam power is enough for 10^10 /spill at High-p)
- **2014-15**: production of detector modules (depending on the budget)
Impact of E16

- hadron modification are observed in several experiments but interpretation is not converged: “mass dropping or broadening?”
 - theoretically the question is oversimplified: T-dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
- pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0, T=0$) using ϕ meson
 - confirm the E325 observation with improved resolution (x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 - first measurement of the dispersion relation of hadrons in nuclear matter
- establish the QCD effect
 - mass generation due to the chiral symmetry breaking
- Further Step (future experiment)
 - slow ϕ at HIHR beam line with 10^9 π beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 - chiral phase transition in the high-density region
International competition

- FAIR (GSI upgrade: new accelerator SIS 100 is funded)
 - Two spectrometers for the heavy-ion collisions are funded
 - HADES : 2-8 GeV : start ~2018
 - detectors will be moved from SIS 18 to SIS 100, as the 1st experiment
 - CBM : 15-30 GeV : probe the high-density state
 - newly constructed
 - Detector acceptances for the A+A : relatively forward
 - not suitable to detect slower mesons in p+A reactions
 - however, a clue is seen in 3.5 GeV p+A in HADES
 - design value of the interaction rate (10^7Hz) is as high as E16
- We strongly urge the construction start of High-p line
 - If even a part of magnets are constructed in the JFY 2012, they can be aligned in the long shutdown in 2013 and thus the earlier completion is expected.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JFY</td>
<td></td>
</tr>
<tr>
<td>J-PARC hadron</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>RJC plan</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>BNL MOU</td>
<td></td>
</tr>
<tr>
<td>RHIC PHENIX</td>
<td></td>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sPHENIX</td>
<td></td>
</tr>
<tr>
<td>ePHENIX</td>
<td></td>
</tr>
<tr>
<td>eRHIC</td>
<td></td>
</tr>
<tr>
<td>LHC ALICE</td>
<td></td>
</tr>
<tr>
<td>GSI FAIR</td>
<td></td>
</tr>
<tr>
<td>HADES run</td>
<td></td>
</tr>
<tr>
<td>High-p line</td>
<td></td>
</tr>
<tr>
<td>E16 construction</td>
<td></td>
</tr>
<tr>
<td>E16 run</td>
<td></td>
</tr>
</tbody>
</table>

This year (JFY) possibly compete with HADES/FAIR
GEM R&D for Tracker/HBD

- **GEM Tracker** to cope with the high rate
 - Ar+CO₂(70:30)
 - angled injection, 2D readout, etc.
 - required position resolution 100um is achieved for angled tracks w/ FADC R/O

- **Hadron Blind Detector** to trigger the electrons
 - CsI photocathode, CF₄ gas purity, etc.

- **Domestic Large size (300mmx300mm) GEM**
 - kapton (Polyimide, PI) t=50um for GT
 - LCP, t=100 um for HBD

![GEM chamber diagram](image)
Beam test results of prototype detectors

GEM Tracker

HBD (Hadron-Blind Cherenkov detector)

- Large size (300x300mm) PI- and LCP-GEM are successfully worked for an electron beam
 - Stability for a pion beam should be checked. : Test @ J-PARC at June.
- GEM Tracker is successfully worked.
- Improvement of the photo-detection efficiency of HBD is on going.

100x100 200x200 300x300

Required position resolution (~100µm) is achieved

UV Cherenkov photons are detected with CsI-evaporated LCP-GEM and CF$_4$ gas

QE upto 40%

10 p.e.
Three types of 2D-R/O board of GEM Tracker

- thin two-dimensional read out board
 - base: t=25 um kapton
 - strip pitch : X: 350 um, Y:350 um
 - required resolution X:100um , Y: 700um
- double side type
 - Y- efficiency is bad (~80%)
- mesh type
 - amplified electrons can reach both X and Y strips by etching-out of base kapton
 - expensive and fragile
- BVH (blind-via-hole) type
 - island electrodes between X strips to transport the electrons to Y strips via holes
 - pitch of Y is changed: 1400um
 - tested in Oct. 2011, works well
GEM Tracker test @ LEPS

1st 100mm x 100mm production type Tracker
- BVH-type R/O board
- Al-mylar cathode
- gas-tight is kept by the GEM frame, Al-mylar and the R/O board
- resolution (efficiency) under the gain=5000
 - 105µm (98%) for X
 - 310 µm (93%) for Y : can be improved by gain=10000

managed by Y. Komatsu & W. Nakai
HBD (Hadron Blind Detector)

- HBD (Thr. type Gas Cherenkov)
 - developed thanks to Weizmann/Stony Brook
 - Ionized electrons are collected by mesh
 - photoelectrons are amplified by 3 stages
 - ionized electrons are amp. by only last 2 stages
 - → can detect only particles with cherenkov photons.
 - (1/100 of pion rejection)
 - GEM (LCP 100um: higher gain) by Scienergy.Co.
 - CsI evaporation by Hamamatsu & RIKEN
 - QE improved at RIKEN: beam test at 2011/3
 - 10 photoelectrons detected (cf. PHENIX ~20 p.e.)
 - Improvement of gas purity and GEM HV config. are required
 - Test @ J-PARC in June
 - pion rejection & p.e. improvement

managed by K. Aoki & K.Kanno
Lead Glass from TOPAZ / E362

17 frames were decomposed at KEK warehouse by Y. Aramaki & S. Sekimoto (Apr. 2012)
FM magnet re-modeling

Hadron hall

additional pole piece

delivered in Feb.2012
(managed by R. Muto)

yoke extension
Summary

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum

 • A major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration

 • Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra

 • but discussion is not converged: chiral restoration or not

- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam at the High-p line.

 • confirm the observation by KEK-PS E325 and provide more precise information of the mass modification

 • establish the QCD-originated mass

 • preparation is underway

 • Staged Goal of construction: the end of JFY 2013
back up
Spectrometer Magnet re-construction

- FM magnet (used by KEK-PS E325)
 - additional **poles and yokes**
 - larger acceptance/stronger field
 - decompose -> proper location on the High-p line -> re-construction with **new parts**
 - a pit (digging of the floor concrete) is required under the magnet
 - cannot be managed by Grant-in-Aid: at least, 'overhead' of grants should be used.
 - takes 6-8 months
 - scheduling of the area and overhead crane usage
 - by the end of JFY2012

- detector installation in JFY2013
 - all the detectors are installed in the Magnet
CLAS-G7 (PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+e^-$
- no anomaly for $p > 0.8\text{GeV/c}$

BKG subtracted
CLAS-G7 (PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+e^-$

- no anomaly for $p > 0.8\text{GeV/c}$: ρ mass dropping <4% in 95%C.L.
 - ρ width broadening (up to ~45%) is consistent with the collisional broadening
 - ω modification is not included in the analysis

BKG subtracted

ρ/ω mass dropping is 9%
CBELSA/TAPS (PRL94(05)192303)

- $\omega \rightarrow \pi^0\gamma \quad (\rightarrow \gamma\gamma\gamma)$
- anomaly in $\gamma + Nb$, not in $\gamma + p$
 - shift param. $k \approx 0.14$

[Graphs and diagrams showing data distributions for ω decay modes and their distributions in $M_{\pi\gamma}$ for Nb and LH_2 targets.]
CBELSA/TAPS

- $\gamma + A \rightarrow \omega \rightarrow \pi^0\gamma (\gamma \gamma \gamma)$
- excess in $\gamma + \text{Nb}$, not in $\gamma + \text{p}$
 [PRL94(05)192303]
- excess is not reproduced significantly by the following experiment
 [EPJA47(11)16]
dispersion of quasi particle in condensed matter

- ARPES (angle-resolved photoemission spectroscopy) measurements
 - Mass acquisition of Dirac electron in the topological insulator
 - heavy electron w/ Kondo-effect in CeCoGe$_{1.2}$Si$_{0.8}$

- Sato et al. (n.phys 7(2011)840)

- Im et al. (PRL 100(2008)176402)
Note: shape and its nuclear matter size / momentum dependence

- size of “mass shift” or “mass dropping” (Δm)
 - proportional to the density : physics
 - could be dependent on the momentum : physics

- number of “shifted” meson
 - proportional to the matter size : experimental viewpoint : use larger nuclei
 - depend on the meson life
 - βγ of mesons : experimental viewpoint: select slower
 - decay width change : physics

- observed shape
 - depend on the “shift”, width, and density distribution of the nuclei
width broadening by absorption

- Attenuation measurements:
 - absorption in nuclei evaluated from the A-dependence of production CS using theoretical models (Glauber, Valencia, Giessen...)
 - additional width: \(\Gamma_{\text{abs}} = \hbar \rho \beta c \sigma_{\text{abs}} \)

- LEPS : \(\phi : \sigma_{\text{abs}} = 35 \text{mb}, p=1.8 \text{ GeV/c} \) [PLB608(05)215] (\(\rightarrow \Gamma \approx 100 \text{ MeV} \))
- TAPS : \(\omega : \sigma_{\text{abs}} = 70 \text{mb}, p=1.1 \text{GeV/c} \), \(\Gamma \approx 150 \text{ MeV} \) [PRL100(08)192302]
- CLAS : \(\phi : 16-70\text{mb}, 2 \text{ GeV/c} \), \(\Gamma = 23\text{-}100\text{MeV} \) [PRL105(10)112301]
 - A-dependence of \(\omega \) (\(p=1.7\text{GeV/c} \)) is not reproduced by any model
- ANKE : \(\phi : 14-21\text{mb}, 0.6\text{-}1.6\text{GeV/c}, 50\text{-}70\text{MeV} \) [arXiv:1201.3517v1]
 - 2.83 GeV p+A

- Note:
 - different from the old higher-energy photo-production data
 - No one measured the width directly through the mass shape
E325 A-dependence of the meson production cross sections

- values for the CM backward
- consistent w/ the former measurement for \(\rho\) meson by Blobel (PLB48(1974)73)
- Nuclear dependence \(\alpha_{\phi} = 0.937\) corresponds to about \(\sigma_{\phi N} = 3.7\)mb (cf. Sibirtsev et.al. EPJA 37(2008)287)

additional \(\Gamma = 12\) MeV for 2 GeV/c \(\phi\) \((\beta = 0.9)\) : consistent with \(\Gamma = 15\) MeV (i.e. \(k_2 = 2.6\))

- Remark:
 \(\Gamma_{\phi} = 15\) MeV at \(m_{\phi} = 985\)MeV is consistent with Oset & Ramos et.al (NPA679(2001)616)