J-PARC E16 experiment and the hadron modification in nuclear matter

Satoshi Yokkaichi
(RIKEN Nishina Center)

• Contents
 - Chiral restoration and hadron spectral modification in nuclear matter
 - Experiments so far : vector meson (dilepton) measurements
 - J-PARC E16 experiment
Mass and chiral symmetry in nuclear matter

• Origin of quark and hadron mass: spontaneous breaking of chiral symmetry
• In hot/dense matter, chiral symmetry is expected to be restored
 – hadron modification is also expected
 – many theoretical predictions...

W. Weise, NPA553(93)59
Vector meson measurements in the world

- **HELIOS/3** (ee, $\mu\mu$) 450GeV p+Be / 200GeV A+A
- **DLS** (ee) 1 GeV A+A
- **CERES** (ee) 450GeV p+Be/Au / 40-200GeV A+A
- **E325** (ee,KK) 12GeV p+C/Cu
- **NA60** ($\mu\mu$) 400GeV p+A/158GeV In+In
- **PHENIX** (ee,KK) p+p/Au+Au
- **HADES (**)** (ee) 3.5GeV p+A/ 1-2GeV A+A
- **CLAS-G7 (*)** (ee) 1~2 GeV γ+A
- **J-PARC E16** (ee) 30/50GeV p+A / ~20GeV A+A ?
- **HADES, CBM / FAIR** (ee) 2-8, 8-45 GeV A+A
- **TAGX** ($\pi\pi$) ~1 GeV γ+A
- **STAR** ($\pi\pi$,KK) p+p/Au+Au
- **LEPS** (KK) 1.5~2.4 GeV γ+A
- **CBELSA/TAPS(*)** ($\pi^0\gamma$) 0.64-2.53 GeV γ + p/Nb

published/ 'modified'
published/ 'unmodified'
running/in analysis
future plan
as of 2011/Jun
Tips

- **Why Heavy Ion?**
 - Chiral restoration as a signal of QGP (hot matter)
 - Cold dense matter is also investigated using $p+A$ and $\gamma+A$ reactions

- **Why dilepton (lepton pair: e^+e^- and $\mu^+\mu^-$)?**
 - Smaller final state interaction (distortion of spectrum) in nuclear matter is expected than the hadronic decays

- **Why vector mesons?**
 - They decay into lepton pair
 - Other mesons (e.g. σ, η, η' ...) are also investigated
 - Baryons are also important of course

- **Why invariant mass?**
 - Most straightforward
 - Other approaches:
 - Width (interaction CS) from the nuclear transparency ratio
 - Mesic nuclei → next talk by Ohnishi-san
Dilepton spectra in Heavy Ion Collision

- **CERES : e^+e^-** (EPJC 41('05)475)
 - “low mass enhancement” : anomaly at the lower region of ρ/ω
 - in A+A, not in p+A
 - relative abundance is determined by their statistical model
 - Both “broadening” and ”dropping” explain the data

- **NA60 :** (PRL96(06)162302)
 - ρ → µ^+µ^- :
 - width broadening of ρ
 - state 'BR scaling (mass dropping) is ruled out'

![In-In SemiCentral](image)
Dilepton spectra in Heavy Ion Collision

- PHENIX : (arXiv:0706.3034v1,0912.0244v1)
 - 200GeV /u Au+Au → e⁺e⁻
 - enhancement below ω
 - cannot reproduced by any model at low pT
 - at high pT, thermal photons reproduce
Dilepton spectra in p+A : KEK-PS E325

12GeV p+A(C,Cu) → ρ/ω/φ +X (ρ/ω/φ → e⁺e⁻, φ → K⁺K⁻)

- In the e⁺e⁻ channel, below the ω and φ, statistically significant excesses over the known hadronic sources including experimental effects
- The excesses are consistent with “mass dropping” based on the chiral restoration in the normal nuclear matter predicted by Hatsuda and Lee

![Graph showing dilepton spectra](image-url)

PRL96(06)092301

ω (783)

Cu

PRL98(07)042501

φ (1020)

Cu

βγ <1.25
Status of dilepton measurements

- low mass enhancement is found in the dilepton spectra in A+A (in comparison with p+p,p+A) from Bevalac to RHIC energy
 - DLS (Bevalac), Helios/3, CERES(PS).... bad S/N ratio
 - NA60(PS) : width broadening of ρ meson by hadronic calculation
 - PHENIX(RHIC) : not explained theoretically yet

- lower energy elementary reactions: finite density, better S/N
 - modification of resonance is found in dilepton spectra
 - E325(KEK-PS) : consistent w/ mass dropping in partial chiral restoration
 - CLAS-g7(JLab) : consistent w/ hadronic calc. (collisional broadening of ρ)

- Modification is observed, but discussion on the physics underlying the observed modification is not converged
 - hadronic many-body effect? chiral symmetry restoration?
 - interpretation model dependence?
 - Assumption of the space-time evolution of the (T, ρ) of matter in the real world
Next step

- In the invariant-mass approach
 - $\phi \rightarrow e^+e^-$: less uncertain than the ρ/ω case
 - ρ's broad and complicated shape, $\rho-\omega$ interference, ρ/ω ratio, etc.
 - systematic study of the mass modification
 - matter-size dependence: larger/smaller nuclei, impact parameter
 - momentum dependence: never measured
 - check the interpretation models

- Mesic nuclei approach
 - the deeply bound pionic atom: success to deduce the chiral condensate in nuclei
 - static system: no space-time evolution
 - measure the decay of meson if possible: only inside-decay
 - another physics?
 - high density(K), chiral partner of N (η)
J-PARC E16 experiment

- Main goal: collect $\sim 1-2 \times 10^5 \phi \rightarrow e^+e^-$ for each target in 5 weeks using 30 (or 50) GeV $p + A$ (C/CH$_2$/Cu/Pb) reactions

 - statistics: ~ 100 times as large as E325
 - systematic study of the modification
 - velocity & nuclear size (0~10 fm) dependence
 - proton/Pb targets / collision geometry (impact parameter)
 - momentum dependence (dispersion relation)
 - mass resolution: $\sigma < 10$ MeV (E325: 10.7 MeV for ϕ)
 - double peak structure can be seen w/ $\beta\gamma < 0.5$, $\sigma \sim 5-6$ MeV
 - $\rho, \omega, J/\psi$'s also can be measured at the same time
 - Confirm the modification observed in E325, and provide new information about the mass of hadrons
E16 : mass resolution requirement

- mass resolution should be kept less than ~10MeV
- Very ideal case: very slow mesons w/ best mass resolution:

\[\Phi(1020) \]
\[Cu \]
\[\beta\gamma < 1.25 \]

\[\beta\gamma < 0.5, \sigma = 5 \text{ MeV} \]

(E325 data)

(model calc.)
E16 : dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee($p<1\text{GeV/c}$)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter $k_1(p)$, to all nuclear targets in each momentum bin
E16: schedule

• 2007: stage 1 (scientific) approval
• 2008-2010: development of prototype detectors
 • GEM Tracker and HBD
 • w/ Grant-in-Aid (2007-8, 2009-13 ($2.4M))
• 2011: additional parts of the spectrometer magnet, R/O circuit development
 • budget of beamline construction (2012-14) is requested by KEK
• 2013: Goal of the spectrometer construction

Collaboration
RIKEN S. Yokkaichi, H. En’yo, F. Sakuma, K. Aoki, J. Kanaya, Y. Aramaki, T. Takahashi
KEK K. Ozawa, M. Naruki, R. Muto, S. Sawada, M. Sekimoto
U-Tokyo Y. S. Watanabe, Y. Komatsu, S. Masumoto, A. Takagi, K. Kanno, W. Nakai
CNS, U-Tokyo H. Hamagaki
Hiroshima-U K. Shigaki
JASRI A. Kiyomichi

Korea-Japan WS@SNU 2011Sep23 S.Yokkaichi
E16: Beam test results of prototype detectors

GEM Tracker:
Required position resolution (~100µm) is achieved with large-size PI-GEM (300mm x 300mm)

Hadron-Blind Gas Cherenkov detector
UV Cherenkov photons (10 photoelectrons) are detected for an electron track with CsI-evaporated LCP-GEM and CF$_4$ gas
Summary

- Investigation of the hadron spectral modification in nuclear matter
 - is a study of the origin of mass (spontaneous breaking of the chiral symmetry, and its possible restoration)
 - i.e., a study of the nature of QCD vacuum
- Spectral modification of hadrons is observed in hot/dense nuclear matter through the dilepton invariant mass spectra
 - but discussion is not converged: chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam.
 - confirm the observation by KEK-PS E325 and provide more systematic information of the mass modification
 - Goal of spectrometer construction: the end of 2013
Backup slides...
- 1993 proposed
- 1994 R&D start
- 1996 construction start
- '97 data taking start
- '98 first ee data
 - PRL86(01)5019 ρ/ω (ee)
- 99,00,01,02....
 - x100 statistics
 - PRL96(06)092301 ρ/ω (ee)
 - PRC74(06)025201 α (ee)
 - PRL98(07)042501 ϕ (ee)
 - PRL98(07)152302 ϕ (KK), α
- '02 completed
- spectrometer paper
 - NIM A457(01)581
 - NIM A516(04)390

History of E325

E325 spectrometer located at KEK-PS EP1-B primary beam line
E325 ϕ meson (divided by $\beta\gamma$)

$\beta\gamma < 1.25$ (Slow)
$1.25 < \beta\gamma < 1.75$
$1.75 < \beta\gamma$ (Fast)

only slow/Cu is not reproduced in 99% C.L.