- **Di-neutron**相関におけるテンソル力の役割 - Role of the tensor correlation on the halo formation in ¹¹Li —

Takayuki MyoRCNP, Osaka Univ.Kiyoshi KatōHokkaido Univ.Hiroshi TokiRCNP, Osaka Univ.Kiyomi IkedaRIKEN

RIKEN mini workshop "核子交換反応で探る⁶He核内2中性子の空間分布"/2006.6

Contents

- \circ core+n+n picture of halo nuclei and di-neutron correlation.
- $\circ\,$ Mechanism of the halo structure and breaking of the magicity in $^{11}{\rm Li}$ based on the core+n+n picture.
 - 1. Naive ⁹Li+n+n model with a deep s-wave core-n potential.
 - 2. Coupled ${}^{9}Li+n+n$ model with tensor and pairing correlations.
 - Configuration mixing for ⁹Li.
 - Effects of two correlations on the halo formation.
- Coulomb breakup strengths.

Description of Halo nuclei based on the "core+n+n" model

- $\circ {}^{6}\text{He}: {}^{4}\text{He}((0s)^{4}) + n + n.$
 - Successful results for G.S., 2^+ .
 - many theoretical works.

- \circ ¹¹Li : ⁹Li + n + n.
 - Large $(1s)^2$ -mixing in G.S.
 - Inversion phenomena in 10 Li
 - Problem of soft dipole resonance.
 - Theoretical ambiguity

- Our approach.
 - -"core+n+n" picture+correlation

[Ref]:K. Ikeda, NPA538,355c('92)

Application to ⁶He

- $\circ \ ^{4}\text{He}+n+n \text{ with OCM}: \ \Phi(^{6}\text{He}) = \mathcal{A}\{ \Phi(^{4}\text{He}) \Phi(nn) \}$
- Interaction: ⁴He-n : KKNN potential, n-n : Minnesota

2n Correlation density for ⁶He G.S.

Funada, Kameyama, Sakuragi, NPA575(1994)

Structures of ¹¹Li

- \circ Expt. : S_{2n}=0.31 MeV, R_m=3.12\pm0.16 / 3.53\pm0.06 fm (⁹Li: 2.32 fm).
- $\circ~$ Breaking of magic number N=8, halo structure in G.S.
 - Simon et al.(expt) : $s^2 \sim 50\%$, Mechanism is unclear.
- \circ Virtual s-state in ¹⁰Li :
 - Expt. : Invariant mass spectrum of ⁹Li-n.
 - Many theories assume a deep s-wave ⁹Li(inert)-n potential.
 - Thompson-Zhukov(PRC49) / Garrido-Fedorov-Jensen(NPA700).
 - Halo structure can be explained in ¹¹Li G.S., and soft dipole resonances appear.
- Excited states: 1.3 MeV (Korsheninnikov, PRL78) / partner of G.S.? (Aoyama)
- Our group performs the extended three-body model analysis with configuration mixing for ⁹Li (PTP101, PTP108, PLB576, pairing).

2n Correlation density for ¹¹Li G.S. (Zhukov et al., Phys.Rep.231(1993))

Fig. 10. Spatial densities of the ¹¹Li ground states calculated by the Faddeev method. The cases are (I) "spin-orbit" case Q10, (II) "pairing" case L6A, and (H) "shallow potential" case Z2.

r_{n-n}

• Strength has two peaks : $3/2^+$ and $\{1/2^+, 5/2^+\}$ due to spin of ⁹Li $(3/2^-)$.

- $(1s_{1/2}) \otimes (0p_{1/2}) = 0^- / 1^-$, ⁹Li : $3/2^-$.
- $0^{-}\otimes 3/2^{-} = 3/2^{+}, \qquad 1^{-}\otimes 3/2^{-} = 1/2^{+}, \ 3/2^{+}, \ 5/2^{+}.$

[Ref] T. Suzuki, H. Sagawa, P.F. Bortignon, NPA662(2000)282

Explicit tensor and pairing correlations in ⁹Li for analysis of ¹¹Li

- \circ We introduce the internal degrees of freedom in ⁹Li (PTP108, pairing).
- We would like to understand the physical aspects of the tensor force.
- \circ Configuration mixing with H.O. basis function (TM, K.Katō, K. Ikeda, PTP113)

(S. Sugimoto et al. for ^{12}C , ^{16}O)

- $0s + \overline{0p} + \overline{1s0d}$ within 2p2h excitations.
- Length parameters $\{b_{\alpha}\}$ are determined independently and variationally. This is useful to represent the high momentum component.

Hamiltonian and variational equations for ⁹Li

$$\circ \quad H = \sum_{i=1}^{A} t_{i} - T_{\mathsf{G}} + \sum_{i
$$\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \qquad \Rightarrow \quad \frac{\partial \langle H - E \rangle}{\partial b_{\alpha}} = 0, \quad \frac{\partial \langle H - E \rangle}{\partial C_{\mathsf{n}}} = 0.$$$$

- Interaction : Akaishi force (AK) (NPA738)
- G-matrix using AV8' with k_Q = 2.8 fm $^{-1}$ (> kF = 1.4 fm $^{-1}$)
- \Rightarrow Long and intermidiate ranges of the tensor force survive.
- Central part : We adjust the intermediate range to fit B.E. and R_m of ⁹Li.

Energy surface of ⁹Li for length parameters of HO (b_{0s} = 1.45 [fm])

Properties of two minima in ⁹Li

^{12 / 21}

Superposition of the tensor and pairing correlations in ⁹Li

Energy [MeV]	-44.3	
$\langle V_T \rangle$ [MeV]	-31.9	
R _m [fm]	2.30	
0p0h	78.5 %	• Tensor correlation:
$(0p_{3/2})_{01}^{-2} (\overline{0p}_{1/2})_{01}^{2}$	8.8 %	\circ 0 ⁻ coupling of $0s_{1/2}-0p_{1/2}$
$(0c (JT)^{-2} (\overline{0} - (JT)^{-2})^{-2} (JT) = (10)$	6.8 %	\Rightarrow pion nature of V _T
(JT)=(01)	0.2 %	(T) - (1 0)
$(0s_{1/2})_{10}^{-2}[(\overline{1s}_{1/2})(\overline{0d}_{3/2})]_{10}$	1.9 %	\Rightarrow deuteron correlation
$(0s_{1/2})_{10}^{-2}(\overline{0d}_{3/2})_{10}^{2}$	1.2 %	

Effect of pairing and tensor correlation in ¹¹Li

14 / 21

Tensor and pairing correlations in ¹¹Li in a coupled ⁹Li+n+n model

- \circ We prepare ⁹Li with pairing and tensor correlations.
 - Superposition : 0p0h + pairing(nn) + tensor(pn)

 \circ The Orthogonality Condition Model(OCM) is applied to solve the equations.

$$\begin{split} & \sum_{i=1}^{\mathsf{N}} \left[\mathsf{h}_{ij}({}^{9}\mathsf{Li}) + (\mathsf{T}_{1} + \mathsf{T}_{2} + \mathsf{V}_{c1} + \mathsf{V}_{c2} + \mathsf{V}_{12} + \Lambda_{1,i} + \Lambda_{2,i}) \ \delta_{ij} \right] \chi_{j}^{\mathsf{J}}(\mathsf{r}) \\ & \Lambda_{\mathsf{i}} = \lambda \cdot \Sigma_{\alpha \in {}^{9}\mathsf{Li}} |\phi_{\alpha}\rangle \langle \phi_{\alpha}| \end{split}$$

Hamiltonian for ¹¹Li in the orthogonarity condition mdoel

- Folding potential with MHN(G-matrix) + Yukawa Tail for ⁹Li-n $(S_n({}^9Li)=4 \text{ MeV})$
 - Same strength for s- and p-waves.
 - Adjust to reproduce $S_{2n} = 0.31$ MeV.
- Argonne potential (AV8') for last 2n.

[Ref] TM, S. Aoyama, K.Kato, K.Ikeda, PTP108(2002)

Boundary condition of the coupled ⁹Li+n+n model

 \circ The ⁹Li core in ¹¹Li in the asymptotic region is the isolated ⁹Li fully with the tensor and pairing correlations.

¹¹Li G.S. properties with tensor and pairing correlations

Coulomb breakup strength into ⁹Li+n+n system $d\sigma/dE$ of ¹¹Li (Target=Pb) 3.5 RIKEN -3.0 do/dE [b/MeV] **Tensor+Pairing** 2.5 fold 2.0 1.5 1.0 0.5 0.0 3 2 4 Energy [MeV]

 \circ No three-body resonances.

• Exp. : Nakamura et al., RIKEN Accel.Prog.Rep.38.

19 / 21

Effect of the correlations in the final states of ¹¹Li breakup

Summary

- 1. We develop the three-body model of halo nuclei with tensor and pairing correlations.
- ⁹Li : Tensor(pn) and pairing(nn) correlations
 exhibit different 2p2h excitations and spatial properties.
- 3. ¹¹Li : Tensor suppression leads to the large admixture of $(1s)^2$ in G.S.
 - "Tensor+Pairing" naturally explains 50 % of $(1s)^2$.
- 4. Coulomb breakup strength depends on the model.
 - Naive three-body model produces three dipole resonances.
 - "Tensor+Pairing" produces no dipole resonances.