Four-body CDCC calculations applied to the scattering of Borromean nuclei

M. Rodríguez-Gallardo

Collaboration

\leftrightarrows Depto. de Física Atómica, Molecular y Nuclear, Universidad de Sevilla
J. M. Arias, J. Gómez-Camacho, and A. M. Moro

\Rightarrow Department of Physics, University of Surrey R. C. Johnson, I. J. Thompson, and J. A. Tostevin

Outline

\Rightarrow Motivation
\Rightarrow Borromean nuclei
\leftrightarrows Discretization methods based on Hyperspherical Harmonics (HH)
\Rightarrow Transformed Harmonic Oscillator (THO)
\Rightarrow Bin
\Rightarrow Four-body Contiuum Discretized Coupled Channels (CDCC)
\Rightarrow Application to ${ }^{6} \mathrm{He}+$ target
\Rightarrow Summary and conclusions

Motivation: General scheme

Three-body discretization methods

\Rightarrow HH method: The states of the system are expanded in Hyperspherical Harmonics

$$
\begin{aligned}
\Psi_{j \mu n}(\rho, \Omega)= & \sum_{\beta} R_{\beta j n}(\rho) \sum_{\nu \iota}\left\langle j_{a b} \nu I \iota \mid j \mu\right\rangle \kappa_{I}^{\iota} \\
& \sum_{m \sigma}\left\langle l m S_{x} \sigma \mid j_{a b} \nu\right\rangle \Upsilon_{K l m}^{l_{x} l_{y}}(\Omega) \chi_{S_{x}}^{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \Omega \equiv\{\alpha, \widehat{x}, \widehat{y}\} \\
& \beta \equiv\left\{\mathbf{K}, l_{x}, l_{y}, l, S_{x}, j_{a b}\right\}
\end{aligned}
$$

Three-body discretization methods

\Rightarrow HH method: The states of the system are expanded in Hyperspherical Harmonics

$$
\begin{aligned}
\Psi_{j \mu n}(\rho, \Omega)= & \sum_{\beta} R_{\beta j n}(\rho) \sum_{\nu \iota}\left\langle j_{a b} \nu I \iota \mid j \mu\right\rangle \kappa_{I}^{\iota} \\
& \sum_{m \sigma}\left\langle l m S_{x} \sigma \mid j_{a b} \nu\right\rangle \Upsilon_{K l m}^{l_{x} l_{y}}(\Omega) \chi_{S_{x}}^{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \Omega \equiv\{\alpha, \widehat{x}, \widehat{y}\} \\
& \beta \equiv\left\{\mathbf{K}, l_{x}, l_{y}, l, S_{x}, j_{a b}\right\}
\end{aligned}
$$

\Rightarrow The hyperradial functions $\left\{R_{\beta j n}\right\}$ can be constructed by different discretization methods

THO method: 2-body system

- M.V. Stoitsov and I. Zh. Petkov, Ann. Phys., 184, 121 (1988)

THO method: 3-body system

$\Rightarrow s(\rho)$ is calculated for each channel β included in the bound ground state

$$
\int_{0}^{\rho} d \rho^{\prime} \rho^{\prime 5 / 2}\left|R_{B \beta}\left(\rho^{\prime}\right)\right|^{2}=\int_{0}^{s} d s^{\prime} s^{\prime 5 / 2}\left|R_{0 K}^{H O}\left(s^{\prime}\right)\right|^{2}
$$

$$
R_{i \beta}^{T H O}(\rho)=R_{B \beta}(\rho) L_{i}^{K+2}\left(s_{\beta}(\rho)^{2}\right)
$$

THO method: 3-body system

$\leftrightharpoons s(\rho)$ is calculated for each channel β included in the bound ground state

$$
\int_{0}^{\rho} d \rho^{\prime} \rho^{\prime 5 / 2}\left|R_{B \beta}\left(\rho^{\prime}\right)\right|^{2}=\int_{0}^{s} d s^{\prime} s^{\prime 5 / 2}\left|R_{0 K}^{H O}\left(s^{\prime}\right)\right|^{2}
$$

$$
R_{i \beta}^{T H O}(\rho)=R_{B \beta}(\rho) L_{i}^{K+2}\left(s_{\beta}(\rho)^{2}\right)
$$

\Rightarrow The Hamiltonian of the system is diagonalized in a finite THO basis with $i=0, \ldots, n_{b}$

THO method: 3-body system

$\Rightarrow s(\rho)$ is calculated for each channel β included in the bound ground state

$$
\int_{0}^{\rho} d \rho^{\prime} \rho^{\prime 5 / 2}\left|R_{B \beta}\left(\rho^{\prime}\right)\right|^{2}=\int_{0}^{s} d s^{\prime} s^{\prime 5 / 2}\left|R_{0 K}^{H O}\left(s^{\prime}\right)\right|^{2}
$$

$$
R_{i \beta}^{T H O}(\rho)=R_{B \beta}(\rho) L_{i}^{K+2}\left(s_{\beta}(\rho)^{2}\right)
$$

\Rightarrow The Hamiltonian of the system is diagonalized in a finite THO basis with $i=0, \ldots, n_{b}$
\Rightarrow Finally the hyperradial functions are obtained as

$$
R_{\beta j n}^{T H O}(\rho)=\sum_{i} C_{n}^{i \beta j} R_{i \beta}^{T H O}(\rho)
$$

Bin method (I)

\Rightarrow Continuum states can be expanded in HH as

$$
\begin{aligned}
& \begin{aligned}
\Psi_{\kappa j \mu}\left(\rho, \Omega, \Omega_{\kappa}\right)= & \sum_{\beta \beta^{\prime}} R_{\beta \beta^{\prime} j}(\kappa \rho) \mathcal{Y}_{\beta j \mu}(\Omega) \\
& \times \sum_{m^{\prime} \sigma^{\prime}}\left\langle l^{\prime} m^{\prime} S_{x}^{\prime} \sigma^{\prime} \mid j \mu\right\rangle \Upsilon_{K^{\prime} l^{\prime} m^{\prime}}^{l^{\prime} l^{\prime}}\left(\Omega_{\kappa}\right)
\end{aligned} \\
& \left\{\beta^{\prime}\right\} \text { incoming; }\{\beta\} \text { outgoing; } \kappa=\sqrt{2 m \varepsilon} / \hbar
\end{aligned}
$$

Bin method (I)

\Rightarrow Continuum states can be expanded in HH as

$$
\begin{aligned}
\Psi_{\kappa j \mu}\left(\rho, \Omega, \Omega_{\kappa}\right)= & \sum_{\beta \beta^{\prime}} R_{\beta \beta^{\prime} j}(\kappa \rho) \mathcal{Y}_{\beta j \mu}(\Omega) \\
& \times \sum_{m^{\prime} \sigma^{\prime}}\left\langle l^{\prime} m^{\prime} S_{x}^{\prime} \sigma^{\prime} \mid j \mu\right\rangle \Upsilon_{K^{\prime} l^{\prime} m^{\prime} m^{\prime}}^{\prime}\left(\Omega_{\kappa}^{\prime}\right)
\end{aligned}
$$

$\left\{\beta^{\prime}\right\}$ incoming; $\{\beta\}$ outgoing; $\kappa=\sqrt{2 m \varepsilon} / \hbar$
\Rightarrow Bins for each incoming channel are calcuated as

$$
R_{j \beta\left\{\beta^{\prime} \varepsilon_{a v}\right\}}^{b i n}(\rho)=\frac{2}{\sqrt{\pi N_{\beta^{\prime} j}}} \int_{\kappa}^{\kappa+\Delta \kappa} d \kappa f_{\beta^{\prime} j}(\kappa) R_{\beta \beta^{\prime} j}(\kappa \rho)
$$

$$
\begin{array}{|l|l}
\hline f_{\beta^{\prime} j}^{n-r}(\kappa)=e^{-i \delta_{\beta^{\prime} j}(\kappa)} & f_{\beta^{\prime} j}^{r}(\kappa)=\sin \delta_{\beta^{\prime} j}(\kappa) e^{-i \delta_{\beta^{\prime} j}(\kappa)} \\
\hline
\end{array}
$$

$$
N_{\beta^{\prime} j}=\int_{\kappa}^{\kappa+\Delta \kappa} d \kappa\left|f_{\beta^{\prime} j}(\kappa)\right|^{2}
$$

Bin method (II)

\Rightarrow The inclusion of all incoming channels is computationally unreachable for reaction calculations presented next

Bin method (II)

\Rightarrow The inclusion of all incoming channels is computationally unreachable for reaction calculations presented next
\Rightarrow So S-matrix is diagonalized for every ε obtaining the eigenchannels and eigenphases

Bin method (II)

\Rightarrow The inclusion of all incoming channels is computationally unreachable for reaction calculations presented next
\Rightarrow So S-matrix is diagonalized for every ε obtaining the eigenchannels and eigenphases
\Rightarrow Then bins are calcualted for each eigenchannel such as explained before for incoming channels

Bin method (II)

\Rightarrow The inclusion of all incoming channels is computationally unreachable for reaction calculations presented next
\Rightarrow So S-matrix is diagonalized for every ε obtaining the eigenchannels and eigenphases
\Rightarrow Then bins are calcualted for each eigenchannel such as explained before for incoming channels
\Rightarrow Now we include only up to $n_{e c}$ eigenchannels that corresponds to the biggest phase-shifts

4-body CDCC formalism

Coupled channels system

Coupling potentials

$$
V_{L n j, L^{\prime} j^{\prime}{ }^{\prime}}^{J}(R)=\langle L n j J M| \sum_{k=1}^{3} \widehat{V}_{k t}\left(\vec{r}_{k}\right)\left|L^{\prime} n^{\prime} j^{\prime} J M\right\rangle
$$

where

$$
\Phi_{L n j}^{J M}(\widehat{R}, \vec{x}, \vec{y})=\sum_{\mu M_{L}} \psi_{j \mu n}(\vec{x}, \vec{y})\left\langle L M_{L} j \mu \mid J M\right\rangle Y_{L M_{L}}(\widehat{R}
$$

multipolar expansion

$$
\begin{aligned}
V_{L n j, L^{\prime} n^{\prime} j^{\prime}}^{J}(R) & =\sum_{Q}(-1)^{J-j} \hat{L} \hat{L}^{\prime}\left(\begin{array}{ccc}
L & Q & L^{\prime} \\
0 & 0 & 0
\end{array}\right) \\
& \times W\left(L L^{\prime} j j^{\prime}, Q J\right) F_{n j, n^{\prime} j^{\prime}}^{Q}(R)
\end{aligned}
$$

Form factors

$$
\begin{aligned}
& F_{n j, n^{\prime} j^{\prime}}^{Q}(R)=(-1)^{Q+2 j-j^{\prime}} \hat{j}^{\prime} j^{\prime}(2 Q+1) \\
& \times \sum_{\beta \beta^{\prime}} \sum_{k=1}^{3} \sum_{\beta_{k} \beta_{k}} N_{\beta \beta_{k}} N_{\beta^{\prime} \beta_{k}^{\prime}} \\
& \times(-1)^{l_{x k}+S_{x k}+j_{a b k}^{\prime}-j_{b o k}-I_{k}} \delta_{l_{x k} l_{x k}} \delta_{S_{x k} S_{x k}^{\prime}} \\
& \times \hat{l}_{y k} \hat{l}_{y k}^{\prime} \hat{l}_{k} \hat{l}_{k} \hat{j}_{a b b k} \hat{j}^{\prime}{ }_{a b k}\left(\begin{array}{ccc}
l_{y k} & Q & l_{y k}^{\prime} \\
0 & 0 & 0
\end{array}\right) \\
& \times W\left(l_{k} l_{k}^{\prime} l_{y k} l_{y k}^{\prime} ; Q l_{x k}\right) W\left(j_{a b k} j_{a b k}^{\prime} l_{k} l_{k}^{\prime} ; Q S_{x k}\right) \\
& \times W\left(j j^{\prime} j_{a b k . j} j_{a b k}^{\prime} ; Q I_{k}\right) \iint\left(\sin \alpha_{k}\right)^{2}\left(\cos \alpha_{k}\right)^{2} \rho^{5} d \alpha_{k} d \rho \\
& \times R_{\beta j n}(\rho) \varphi_{K_{k}}^{l_{k k} l_{k j}}\left(\alpha_{k}\right) \mathcal{V}_{Q}^{k}\left(R, y_{k}\right) \varphi_{K_{k}^{\prime}}^{l_{k k} l_{y k}^{\prime}}\left(\alpha_{k}\right) R_{\beta^{\prime} j^{\prime} n^{\prime}}(\rho)
\end{aligned}
$$

${ }^{6}$ He Hamiltonian

$$
\begin{aligned}
& \widehat{H}(\rho, \Omega)=\widehat{T}(\rho, \Omega)+\widehat{V}(\rho, \Omega) \\
& V=V_{n \alpha}+V_{n \alpha}+V_{n n}+V_{n n \alpha}
\end{aligned}
$$

$$
\Rightarrow n+\alpha \quad V_{n \alpha}=V_{c}+V_{S O}
$$

$$
V_{c}, V_{S O}: \text { Woods-Saxon }
$$

$$
\Rightarrow \operatorname{GPT} n+n V_{n n}=V_{c}+V_{S O}+V_{t}
$$

$$
V_{c}, V_{t}, V_{S O}: \text { Gaussian }
$$

$$
\Rightarrow n+n+\alpha \text { : power } V_{\text {pow }}=\frac{a}{\left[1+(r / b)^{c}\right]}
$$

- Pauli forbidden states: repulsive V_{c} for s-waves *

THO basis

$$
K_{\max }=8
$$

THO: Energy spectrum

Bin: Energy spectrum

${ }^{6} \mathrm{He}+{ }^{64} \mathbf{Z n} @ 13.6 \mathrm{MeV}$: elastic

${ }^{6} \mathbf{H e}+{ }^{64} \mathbf{Z n} @ 13.6 \mathrm{MeV}$: breakup

2^{+}resonance

${ }^{6} \mathbf{H e}+{ }^{64} \mathbf{Z n} @ 10 \mathrm{MeV}:$ elastic

${ }^{6} \mathbf{H e}+{ }^{208} \mathbf{P b} @ 22 \mathrm{MeV}:$ elastic

${ }^{6} \mathbf{H e}+{ }^{208} \mathbf{P b} @ 22 \mathrm{MeV}:$ convergence

${ }^{6} \mathrm{He}+{ }^{12} \mathbf{C} @ 229.8 \mathrm{MeV}$: elastic

Summary and conclusions

\leftrightarrows We have presented two different discretization methods for a three-body system, THO and bin, based on expansion in HH .
\Rightarrow We have generalized the CDCC formalism for the application to four-body reactions.
\Rightarrow The formalism has been applied to the Borromean nucleus ${ }^{6} \mathrm{He}$.
\Rightarrow We have seen as CDCC calculations with THO or bin as discretization methods is an efficient procedure for the study of four-body reactions.

