The Method of CDCC for Four-Body Breakup Reactions

CDCC : Continuum-Discretized Coupled-Channels

Takuma Matsumoto (RIKEN Nishina Center)

T. Egami^a, K. Ogata^a, Y. Iseri^b, M. Kamimura^a and M. Yahiro^a (^aKyushu Univ., ^bChiba-Keizai College)

2007 Summer meeting "Direct Reaction with Exotic Beams"

Region of Interest: Neutron & Proton Rich

Breakup reactions have played key roles in investigating properties of weakly bound nuclei.

We propose an accurate method of treating four-body breakup processes by extending **CDCC**

- **Continuum-Discretized Coupled-Channels (CDCC)**
 - Developed by Kyushu group about 20 years ago

— M. Kamimura *et al.*, PTP Suppl. 89, 1 (1986).

• Treats breakup states explicitly

— non-adiabatic and non-perturbative calculation

Applied to only three-body breakup reactions

Application to analyses of ⁶He breakup reactions

Continuum-Discretized Coupled-Channels

- Essence of CDCC
 - Breakup continuum states are described by a finite number of discretized continuum states.

A set of eigenstates forms a complete set within a finite model space that is important for breakup processes.

How to calculate discretized continuum states for three-body projectile

Gaussian Expansion Method (GEM)

E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 ('03)

GEM : an accurate method of solving few-body problems.

— Gaussian basis function —

$$\Phi_{Im}(\mathbf{y},\mathbf{r}) = \sum_{\lambda,\ell,\Lambda,S} A_{\gamma} y^{\lambda} r^{\ell} e^{-\alpha y^2 - \beta r^2} \left[\left[Y_{\ell}(\hat{y}) \otimes Y_{\lambda}(\hat{r}) \right]_{\Lambda} \otimes S \right]_{Im}$$

Bound and discretized continuum states are obtained by diagonalizing of three-body Hamiltonian with the basis functions

Bound and Discretized Continuum states of 6He

6He Breakup Reaction

- ⁶He + ¹²C scattering: E_{lab} » Coulomb barrier
 - Soulomb breakup effects are negligible.

- **●** 6 He + 209 Bi scattering: $E_{lab} \approx$ Coulomb barrier
 - Soulomb breakup is to be significant.

Breakup Continuum States of 6He

Elastic Cross Section (6He+12C @ 18 MeV)

Breakup Cross Section (6He+12C @ 18 MeV)

Breakup Continuum States of 6He

- Coupling Potential : Cluster-Folding ⁴He²⁰⁹Bi potential : $V_{\alpha T}(r_{\alpha})$ · Barnet and Lilley, PRC 9, 2010.
 - n^{-209} Bi potential : $V_{nT}(r_n)$ · Koning and Delaroche, NPA 713, 231.

$$U_{nn'}(R) = \int dr_{\mathbf{p}} \boldsymbol{\rho}_{nn'}(\boldsymbol{r}_{\mathbf{p}}) \boldsymbol{V}_{\alpha T}(\boldsymbol{r}_{\alpha})$$
$$+ \int dr_{\mathbf{p}} \boldsymbol{\rho}_{nn'}(\boldsymbol{r}_{\mathbf{p}}) \boldsymbol{V}_{nT}(\boldsymbol{r}_{n_{1}})$$
$$+ \int dr_{\mathbf{p}} \boldsymbol{\rho}_{nn'}(\boldsymbol{r}_{\mathbf{p}}) \boldsymbol{V}_{nT}(\boldsymbol{r}_{n_{2}})$$

DREB2007 - p.11

Angular Distribution of Elastic Cross Section

The four-body CDCC calculation well reproduces the data.

Breakup Cross Section (6He+209Bi @ 19 MeV)

Summary

- We propose a fully quantum-mechanical method called four-body CDCC, which can describe four-body nuclear and Coulomb breakup.
- We apply four-body CDCC to analyses of ⁶He nuclear and Coulomb breakup reactions, and found that four-body CDCC can reproduce the experimental data.
- Thus four-body CDCC is indispensable to analyse various four-body breakup reactions in which both nuclear and Coulomb breakup processes are to be significant.
- In a future work, we are developing a new method of calculation of energy distribution of breakup cross section and momentum disrtibution of breakup particles.