Sensitivity of breakup calculations to projectile description

Pierre Capel, Filomena Nunes

ULB, Brussels, Belgium & NSCL, Michigan, USA

Introduction

Halo nuclei are light exotic nuclei with large radius and small separation energy of one or two nucleons. Seen as a core + loosely bound nucleon (\equiv halo) Breakup used to study halo nuclei

But, what can we actually learn from breakup? What is the interplay between structure and reaction? Can we extract SF, or ANC? influence of continuum?

- Test sensitivity to wave function parts
- Test sensitivity to phase shift

Model

Projectile (P) modelled as a two-body system: core (c)+loosely bound nucleon (f) described by

$$H_0 = T_r + V_{cf}(\boldsymbol{r})$$

 V_{cf} adjusted to reproduce bound states and some resonances

$$V_{cT}, V_{fT} \equiv \text{optical potentials}$$

 \Rightarrow breakup reduces to three-body scattering problem: $[T_R + H_0 + V_{cT} + V_{fT}] \Psi(\mathbf{R}, \mathbf{r}) = E_T \Psi(\mathbf{R}, \mathbf{r})$

R

T

Solved with Dynamical Eikonal [PRC 73, 024602 (06)] and CDCC [Tostevin, F.M., Thompson, PRC 63, 024617 (01)]

SuSy transformations

 H_0 , H'_0 with different interior but same asymptotics obtained by SuSy transfo. [D. Baye PRL 58, 2738 (1987)]

- Deep potential ⇒spurious deep bound state
 ⇒node in physical bound state
- Remove deep state by SuSy ⇒remove node but keep same asymptotics (ANC and phase shift)
- Analyse difference in σ_{bu}^{th} between deep vs SuSy

Peripherality of breakup reactions

No difference between deep and SuSy potentials at low and intermediate energies, for various observables (similar results on light targets) \Rightarrow breakup probes only asymptotics (ANC) \Rightarrow not sensitive to whole normalisation (SF) [P.C., F.M. Nunes, PRC 75, 054609 (2007)]

Projectile-target peripherality

Sensitivity to continuum description

 $\sigma_{\rm bu}/\rm ANC^2 \Rightarrow$ differences due to continuum:

• unfitted p1/2 resonance in ⁸B

• non-resonant p3/2 phase shift in ¹¹Be \Rightarrow Breakup probes both bound and scattering states Peripheral \Rightarrow ANC and phase shift [P.C., F. M. Nunes, PRC 73, 014615 (2006)]

Conclusion

- Breakup used to study halo nuclei
- To test peripherality, we compute σ_{bu}^{th} with two H_0 obtained by SuSy that differ only in the interior
- Calculations done at low/intermediate energies, heavy/light targets, many observables studied
- Breakup probes the tail of wave functions (ANC) ⇒not sensitive to total normalisation (SF)
- Breakup is sensitive to projectile continuum
 ⇒needs to be constrained
 ⇒need of scattering data

Support from the NSF & NSERC is acknowleged

¹¹Be on C at 67AMeV

Test peripherality on light target (nuclear dominated) No difference between deep and SuSy ⇒even on light target, breakup is peripheral ⇒breakup probes ANC

SF vs ANC

Actual wave function contains various configurations: $\Psi(\mathbf{r}) = S_0 \Phi_0(\mathbf{r}) + \dots$

If only Φ_0 contributes to breakup $\sigma_{\rm bu} \propto S_0^2 = {\rm SF}$

But if breakup probes only the tail since $\Phi_0 \xrightarrow[r \to \infty]{} be^{-\kappa r}$ $\Rightarrow \sigma_{bu} \propto (bS_0)^2 = ANC^2$ But ANC can be useful

Unfortunately continuum plays along...

SuSy transformations

Transformations of a potential that remove ground state without altering remaining spectrum. Preserve asymptotics, i.e. phase shifts in continuum and ANC of bound states.

Baye, Phys. Rev. Lett. 58, 2738 ('87); J. Phys. A 20, 5529 ('87)

$$V_2^{lj} = V_0^{lj} - 2\frac{d^2}{dr^2} \ln \int_0^r |u_{lj}^0(r')|^2 dr',$$

where u_{lj}^0 is the wave function of the removed state \Rightarrow potential modified only in the range of u_{lj}^0 wave functions modified accordingly

 \Rightarrow preserve ANC and δ_{lj}