The **INJST2** Array

D. Beaumel, IPN Orsay

- First experiments at GANIL
- Physics program and outlooks

DREB International Workshop, May 30th- June 2nd, 2007

82

126

Direct reactions studies

INVARIANT MASS method (proton-rich nuclei)

The MUST array

(IPNO-Saclay-Bruyères) <u>8 Telescopes</u> surface: 6x6cm²

- DS Strip 60X+60Y (300 $\mu m)$
- Si(Li) 3mm
- CsI

MUST2 : a major upgrade of MUST

- Increase angular coverage
 - Better efficiency Several reactions in one shot
 - More compact
- higher granularity (multiparticle)
 New electronics

Collaboration: IPNO/SPhN-Saclay/GANIL

MUST2 electronics

Saclay IPN GANIL

<u>Resolutions</u> 40 keV FWHM (α source) ~500 psec FWHM

SOFTWARE features:

✓ Interface (Java) for setting and monitoring parameters of the system

Automatic calibration using internal pulser
 Automatic alignment of pedestals for zero substraction

Magicity loss at Z=8 using the ¹⁴O(p,t) at GANIL

Spokesperson: H.Iwasaki, IPNO (thesis work of D. Suzuki)

- magicity loss at N=8 e.g. ¹²Be
- intruder configuration in ground states (knockout reaction at GANIL and MSU)
- low-lying intruder 1⁻ and 0⁺ states (inelastic scattering at RIKEN H.lwasaki et al. PLB481(00)7

H.Iwasaki et al. PLB491(00)8, S.Shimoura et al. PLB560(03)31)

magicity loss at Z=8 ??

- low-lying 2s_{1/2} orbital ?
- monopole interaction ?
 (p 1p_{1/2} n 1p_{3/2})

	¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O		
= 8		¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N		
	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C		
		¹⁰ B	¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B		
		⁹ Be	¹⁰ Be	¹¹ Be	¹² Be		¹⁴ Be		
	⁷ Li	⁸ Li	⁹ Li		¹¹ Li				
	⁶ He		⁸ He						
	<i>N</i> = 8								

=> Spectroscopy on low-lying excited states in ¹²O

Calculated angular distributions

DWUCK4 zero-range DWBA calc.

pure configurations are assumed ; $(1p_{3/2})^2$ for 0⁺, 2⁺ $(1p_{3/2})(1s_{1/2})$ for 1⁻, $(1p_{1/2})^2$ for 0₂⁺

characteristic curves depending on the transfer L value => spin assignment

¹⁶O beam

Result (preliminary) at GANIL April 2007 (collaboration between IPN-Orsay, Ganil, CEA-Saclay (France) and Univ.of Tokyo, RIKEN, RCNP (Japan)

p(16O,14O)t at 40 AMeV

Result (preliminary)

p(16O,15O)d at 40 AMeV

Test experiment @ GANIL: $^{22}Ne + \alpha$ at 30 MeV/u

²²Ne + α at 30 MeV/u

²²Ne + α at 30 MeV/u

- Shell evolution (S.O. interaction, tensor force,..)
 (d,p) : localize and identify neutron shells
 (d,³He) (d,t) : SF of occupied proton (neutron) shells
- p-n isoscalar pairing deuteron transfer on N=Z nuclei
- > Astrophysics: simulation of (n,γ) using (d,p)

In view of SPIRAL2 : the GASPARD collaboration Gamma SPectroscopy and PARticle Detection

- > Fully integrated 4π gamma (scintillators) + 4π particles high granularity
- PID for light particles using PSA in silicon