Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements

TRACE ancillary:

a highly-segmented silicon-pad detector for light charged particles emitted in direct nuclear reactions

Daniele Mengoni Università e Sezione INFN di Padova ITALIA

DREB07, RIKEN, Japan May 30 ÷ June 2, 2007

Outline					
Introduction	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements

- 2 TRACE simulation and design
 - Estimations, simulation and performances evaluation
 - Signals induced in silicon

3 Experimental tests

- In beam test: silicon ancillary coupled to the AGATA cluster
- Detector & electronics (NIM, ASIC) tests

Introduction 000	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements			
Introdu	Introduction							

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introdu	iction				
Introduction	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements

Instrumentation: ancillaries used in conjunction with γ -spectrometers

Selectivity improvement and background reduction

Introduction ○○○●	TRACE simulation and design	Experimental tests	Conclusion O	Summary	Acknowledgements
Introdu Suitable re	uction eactions				

Direct nuclear reactions

in inverse kinematics to measure the angle of the recoiling light particle.

... Fusion-evaporation reactions

to measure energy and angle of the recoiling light particle with ancillary detectors coupled with gamma arrays.

INFN

・ロ・・ 日本・ ・ 日本・ ・ 日本

Introduction ○○○●	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements
Introdu Suitable re	ICTION Pactions				

Direct nuclear reactions

in inverse kinematics to measure the angle of the recoiling light particle.

... Fusion-evaporation reactions

to measure energy and angle of the recoiling light particle with ancillary detectors coupled with gamma arrays.

INFN

・ロト ・ 四 ト ・ 回 ト ・ 回

Introduction	TRACE simulation and design ●○○○○○○	Experimental tests	Conclusion O	Summary	Acknowledgements
Design	o criteria				

 \mathbf{z}

- Material Transparency, energy resolution, properties, costs
- Particle discrimination technique
- Segmentation
- Efficiency
- Pad (or strips)
- 4π detector

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 = • の � @

INFN

Introduction	TRACE simulation and design ●000000	Experimental tests	Conclusion o	Summary	Acknowledgements
Desig	criteria				

Material

• Particle discrimination technique E- ΔE , thickness

INFN

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

- Segmentation
- Efficiency
- Pad (or strips)
- 4π detector

0000	••••••		
Design	criteria		

- Material
- Particle discrimination technique
- Segmentation Angular resolution

INFN

(日) (圖) (E) (E)

- Efficiency
- Pad (or strips)
- 4π detector

Introduction 0000	TRACE simulation and design ●○○○○○○	Experimental tests	Conclusion o	Summary	Acknowledgements
Design	criteria				

- Material
- Particle discrimination technique
- Segmentation
- Efficiency Solid angle coverage, low energy threshold

INFN

(日) (圖) (E) (E)

- Pad (or strips)
- 4π detector

0000	•000000	000	O	Summary	Acknowledgements
Design	criteria				

- Material
- Particle discrimination technique
- Segmentation
- Efficiency
- Pad (or strips) Sizable number, heat dissipation, energy resolution

• 4π detector

Introduction	TRACE simulation and design ●○○○○○○	Experimental tests	Conclusion o	Summary	Acknowledgements
Design	criteria				

- Material
- Particle discrimination technique
- Segmentation
- Efficiency
- Pad (or strips)
- 4π detector Reaction kinematics

INFN

(日) (圖) (E) (E)

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

Simulation: framework Event generator, radiation interaction

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

	ledgements
0000 0000 00 000 0	

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

Introduction 0000	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements
Simula TRacking	tion: TRACE	particle Ejectiles			

- Starting point: improvement of the EUCLIDES Si ball;
- Next steps: increase segmentation and solid angle coverage without losing in simplicity (barrel, end-caps).

Introduction	TRACE simulation and design	Experimental tests	Conclusion O	Summary	Acknowledgements
Transc	parencv				

- Full-energy eff.:probability to detect the total energy of any emitted photon individually
- Peak-to-total ratio: the ratio of full energy efficiency to the total interaction efficiency.

Introduction	TRACE simulation and design	Experimental tests	Conclusion O	Summary	Acknowledgements
Donnle	er correction				

TRACE8

Doppler broadening

- uncertainty in the photon emission angle
- uncertainty in the recoil energy
- intrinsic detector resolution

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 めんぐ

Introduction TRACE simulation and design Experimental tests Conclusion Summary Acknowledge	nents

Collecting electrodes

Rear side current signals as a function of the injected particles.

The particles are injected in the middle of the central pad.

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
	000000				

Neighbour electrodes

Rear side, bipolar transient signals as a function of the injected particles. The particles are injected in the middle of the central pad.

Intro	duction	TRACE simulation and design	Experimental tests ●○○	Conclusion O	Summary	Acknowledgements
Ar Sin	ncilla	r y impact n Si, Ge cluster				

Silicon center, PSA on Ge detector

• Full information on the DSSSD, PSA on Ge detector

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgement
		000			

Preliminary tests: ITC-IRST detectors 300 μm,1 mm, 1.5 mm thickness, 1x1, 2x2, 4x4 mm², low resistivity, AC coupling.

Junction side: DC, AC pad; bias and reference voltage; guard rings; "punch-through" resistance.

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
		000			

Preliminary tests: ITC-IRST detectors Energy resolution with modular NIM and ASIC electronics

Introduction	TRACE simulation and design	Experimental tests	Conclusion	Summary	Acknowledgements
Conclu Telescope	ISION Prototype				

- ASIC: quasi-parallel energy-time cycle;
- Telescope prototype closely resembles the traditional Si telescope;
- TRACE prototype key features: Si-pad technology, integrated electronics, high segmentation, PSA ...

Introduction	TRACE simulation and design	Experimental tests	Conclusion o	Summary	Acknowledgements
Summ	ary				

- Simple estimations
- Geometry simulation
- PSA simulation
- Ancillary impact
- Si and electronics test

 \implies telescope specifications and possible prototype.

- Future perspectives:
 - PSA test
 - In beam test

0000	0000000					
Acknowledgements						

INFN (Italy)

- LNL: A. Gadea, G. Prete, G. de Angelis, J.J. Valiente-Dobon, R. Orlandi, F. della Vedova, E. Sahin, R.P. Singh, R. Ponchia, P. Cocconi, D. Rosso.
- Sezione di Padova: F. Recchia, E. Farnea, D.Bazzacco, S.Lunardi, C. Ur, R. Isocrate.
- Sezione di Perugia: E. Fiandrini, G. Ambrosi, M. Ionica, G. Alberti.

IN2P3 (F)

C.M. Petrache, P. Edelbruck, L. Lavergne, L. Leterrier, and the MUST2 team.

Surrey University (UK)

P.H. Regan and the TIARA team.