Microscopic analysis of α inelastic scattering on ¹²C exciting to the 3α cluster state

M. Takashina (YITP, Kyoto)

The elastic, 2_1^+ and 3_1^- channels are well reproduced by calculation.

However, the 0_2^+ channel cannot be reproduced.

Reliable wfs of these states are obtained.

(semi-) Microscopic Coupled-Channel (MCC) method

Coupled-channel equation

$$\left[T_{R} + \underline{V_{ii}(R)} - E_{i}\right]\chi_{i}(R) = -\sum_{j \neq i}^{N} \underline{V_{ij}(R)} \chi_{j}(R) \qquad (i = 1 \sim N)$$

λī

(semi-) microscopic α -¹²C potential

Case 1: Double-folding model

$$V_{ij}(\vec{R}) = \int \rho_0^{(\alpha)}(\vec{r}_1) \ \rho_{ij}^{(^{12}C)}(\vec{r}_2) \ v_{NN}(\vec{r}_1 + \vec{R} - \vec{r}_2) \ d\vec{r}_1 \ d\vec{r}_2$$
$$U_{ij}(\vec{R}) = (N_R + iN_I)V_{ij}(\vec{R}) \qquad \text{DDM3Y}$$

Case 2: N-α single-folding model

$$U_{ij}(\vec{R}) = \int \rho_{ij}^{(^{12}C)}(\vec{r}) v_{N-\alpha}(\vec{R}-\vec{r}) d\vec{r}$$
$$v_{N-\alpha}(\vec{R}-\vec{r}) = -V(1+\beta_{\nu}\rho^{2/3}(\vec{r}))e^{-|\vec{R}-\vec{r}|^{2}/a_{\nu}}$$
$$-iW(1+\beta_{\nu}\rho^{2/3}(\vec{r}))e^{-|\vec{R}-\vec{r}|^{2}/a_{\nu}}$$

 $V, \beta_v, a_v, W, \beta_w, a_w$ are determined to reproduce the elastic data.

The elastic, 2_1^+ and 3_1^- channels are well reproduced by calculation.

However, the 0_2^+ channel cannot be reproduced.

Similar discrepancy

B. John et al., Phys. Rev. C68, 014305 (2003)

¹²C(α , α ') at E_{α}=240 MeV

E0 transition strength to 0_2^+ was derived using the single-folding + collective model.

TABLE IV. Isoscalar E0 and E1 energy weighted sum-rule strengths for low-lying states in ^{12}C .

$E_x(\text{MeV}); J^{\pi}$	Isoscalar EWSR (%)			
	Ω Present work	³ He scattering analysis ^a	⁶ Li scattering analysis ^b	Electron scattering analysis ^c
7.65; 0+	7.6±0.9	8.6	9.5	15
10.3; 0+	6.9±0.9		5 ± 1	correct
10.84; 1 -	0.08 ± 0.02			CONEC

Transition density by collective model

$$\rho_{tr}(r) = \beta \left(3 + r \frac{d}{dr}\right) \rho_{gs}(r)$$

 β is determined experimentally

The strength derived from α inela. is about **a half** of the electron scat.

A possible reason (?)

We include the 3α -breakup channels obtained by the RGM calculation.

- two 0⁺ pseudo-states
- two 2⁺ pseudo-states

 $\geq 2_2^+$ resonance state $B(E2; 0_2^+ \rightarrow 2_2^+) \approx 25 B(E2; 0_1^+ \rightarrow 2_1^+)$

M. Kamimura, Nucl. Phys. A 351, (1985) 456.

The discrepancy is **not** due to the breakup effect.

Other possible reason is the exotic structure of ${}^{12}C(0_2^+)$. (well developed 3α cluster structure)

We should consider this fact.

In order to take it into account in the folding calculation, we suggest the following procedure. (N- α single-folding case)

Folding procedure for cluster state

Assumption

$$\rho_{ij}^{(^{12}C)}(\vec{r}) = \int \omega_{ij}^{(3\alpha)}(\vec{r}') \rho_0^{(\alpha)}(\vec{r} - \vec{r}') d\vec{r}'$$

 $ho_0^{(lpha)}(\vec{x})$: nucleon density of α -particle $\omega_{ij}^{(3\alpha)}(\vec{r}')$: point α density in ¹²C

Folding procedure for cluster state

 0_{2}^{+}

$$\rho_{ij}^{(^{12}C)}(\vec{r}) = \int \omega_{ij}^{(3\alpha)}(\vec{r}') \rho_0^{(\alpha)}(\vec{r} - \vec{r}') d\vec{r}'$$

$$V_{ij}(\vec{R}) = \int \rho_{ij}^{(^{12}C)}(\vec{r}) \ v_{N-\alpha}(|\vec{R} - \vec{r}|, \rho(\vec{r})) \ d\vec{r}$$

$$\rightarrow \int \omega_{ij}^{(^{3}\alpha)}(\vec{r}') \ V_{\alpha-\alpha}(|\vec{R} - \vec{r}'|) \ d\vec{r}' \equiv V_{ij}^{(new)}(\vec{R})$$

$$\alpha - \alpha \text{ potential}$$

$$V_{\alpha-\alpha}(|\vec{R}-\vec{r}'|) = \int \rho_0^{(\alpha)}(\vec{r}-\vec{r}')v_{N-\alpha}(|\vec{R}-\vec{r}|, \underline{\rho_0^{(\alpha)}(\vec{r}-\vec{r}')})dr$$
replaced

We also assume that $V_{\alpha-\alpha}(|\vec{R} - \vec{r}'|)$ has no density dependence because of the α gas-like structure.

If $v_{N-\alpha}(|\vec{R} - \vec{r}|, \rho(\vec{r}))$ has no density dependence,

$$V_{ij}^{(new)}(\vec{R}) = V_{ij}(\vec{R})$$

We obtain improved results. More precise calculation is necessary.

Coupling potential

Summary

- ✓ We consider the cluster structure of ${}^{12}C(0_2^+)$ for the calculation of folding potential.

We obtain improved results.
 (although the present results are very preliminary)

More precise calculation is necessary for $\omega_{ij}^{(3\alpha)}(\vec{r}')$ (e.g. OCM calc.)

Coupling term

