Radioactive Beams for Nuclear Spectroscopy and Nuclear Astrophysics

R. E. Tribble

May 30, 2007

Today's Talk

- What we measure in transfer reactions
- ANCs for nuclear astrophysics
 - recent results
- Spectroscopic factors
 - connections to nuclear astrophysics
- Future directions

ANCs for (p,γ) rates

- Proton transfer reactions
 - stable and radioactive beams
- Neutron transfer reactions + charge symmetry
 - stable beams
- Breakup reactions
 - radioactive beams
- Ancillary measurements
 - elastic scattering for O.M. parameters
 - folding model O.M. parameters in the *p* shell

H burning, CNO & HCNO Cycles

Reactions studied relevant to: *p-p* chain rapid α -p reactions ¹⁸Ne **CNO cycle HCNO cycle Breakout from CNO cycle Ne-Na cycle** 15**()** 13**()** 14**O** ⁹C 15N 12 ⁸B ⁷Be t**ic Beam**s

Nireci

ANCs (p) measured using stable beams

- ${}^{9}\text{Be} + p \leftrightarrow {}^{10}\text{B}^*$ ⁹Be(p,γ)¹⁰B $[{}^{9}Be({}^{3}He, d){}^{10}B; {}^{9}Be({}^{10}B, {}^{9}Be){}^{10}B]$
- ${}^{12}C + p \leftrightarrow {}^{13}N$ $[^{12}C(^{3}He, d)^{13}N]$
- ${}^{13}C + p \leftrightarrow {}^{14}N \quad [{}^{13}C({}^{3}He, d){}^{14}N; {}^{13}C({}^{14}N, {}^{13}C){}^{14}N]$
- $^{14}N + p \leftrightarrow ^{15}O$ [¹⁴N(³He,*d*)¹⁵O]
- ${}^{16}\text{O} + \text{p} \leftrightarrow {}^{17}\text{F}^*$
- $[^{16}O(^{3}He, d)^{17}F]$ • ²⁰Ne + p \leftrightarrow ²¹Na^{*} [²⁰Ne(³He, *d*)²¹Na]
 - beams $\approx 10 \text{ MeV/u}$

- ¹²C(p,γ)¹³N ¹³C(p,γ)¹⁴N
- $^{14}N(p,\gamma)^{15}O$
- ¹⁶**Ο(p**,γ**)**¹⁷**F**
- ²⁰Ne(p,γ)²¹Na

- * Test cases

with Exotic Beams

beams $\approx 10 - 12 \text{ MeV/u}$

• ${}^{17}F + p \leftrightarrow {}^{18}Ne [{}^{14}N({}^{17}F,{}^{18}Ne){}^{13}C] {}^{17}F(p,\gamma){}^{18}Ne$ {ORNL (TAMU collaborator)}

- ${}^{13}N + p \leftrightarrow {}^{14}O$ [${}^{14}N({}^{13}N,{}^{14}O){}^{13}C$] ${}^{13}N(p,\gamma){}^{14}O$
- ${}^{12}N + p \leftrightarrow {}^{13}O$ [${}^{14}N({}^{12}N,{}^{13}O){}^{13}C$] ${}^{12}N(p,\gamma){}^{13}O$
- $\begin{bmatrix} {}^{14}N({}^{7}Be, {}^{8}B){}^{13}C] \\ \bullet \ {}^{11}C + p \leftrightarrow {}^{12}N \quad [{}^{14}N({}^{11}C, {}^{12}N){}^{13}C] \ {}^{11}C(p,\gamma){}^{12}N \end{bmatrix}$
- ⁷Be + p \leftrightarrow ⁸B [¹⁰B(⁷Be,⁸B)⁹Be] ⁷Be(p, γ)⁸B

ANCs measured by our group with radioactive (rare isotope) beams

- ⁷Li + n \leftrightarrow ⁸Li $[^{13}C(^{7}Li, ^{8}Li)^{12}C]$ ⁷Be(p,γ)⁸B
- $^{12}C + n \leftrightarrow ^{13}C [^{12}C(^{13}C,^{12}C))^{13}C]$
- ²²Ne + n \leftrightarrow ²³Ne
- ${}^{16}\text{O} + \text{n} \leftrightarrow {}^{17}\text{O}$
- ${}^{17}\text{O} + \text{n} \leftrightarrow {}^{18}\text{O}$

- $[^{13}C(^{22}Ne,^{23}Ne)^{12}C]^{22}Mg(p,\gamma)^{23}AI$
- $[^{13}C(^{16}O,^{17}O)^{12}C]$ $^{16}O(p,\gamma)^{17}F$
- - $[^{13}C(^{17}O,^{18}O)^{12}C]$ $^{17}F(p,\gamma)^{18}Ne$

beams $\approx 10 \text{ MeV/u}$

S Falcto(1 for, 18 N)(3 , 9)) 14 O

Use R-matrix with resonant and DC pieces to get S factor

Find S(0) about 7 keVb with constructive int.

Cross sections for (p,γ) from *p*-transfer reactions with RNB from MARS

Extended telescope system: $\Delta E - PSD 65, 110 \ \mu m$ $E - 500 \ \mu m$

¹²N @12 MeV on N₆C₃H₆ – May 2006

¹²C @ 23 MeV/A - 150 pnA ¹²N @12 MeV/A - 10⁵ pps

data

25

DWBA-calc.

30

Գ _{с.м.} (deg.)

35

Elastic angular distribution:

Transfer angular distribution:

C² ~ 3.3 fm⁻¹

V [MeV]	r _v [fm]	a _∨ [fm]	W [MeV]	r _w [fm]	a _w [fm]	χ2
91.8	0.90	0.86	26.9	1.10	0.71	4.4
200	0.70	0.95	22.0	1.16	0.65	4.9
396.3	0.57	0.95	25.2	118	0.62	4.9

Direct Reaction With Exotic Beams

V [MeV]	r _v [fm]	a _v [fm]	W [MeV]	r _w [fm]	a _w [fm]	χ2
89.1	0.88	0.90	26.2	1.16	0.70	5.0
189.8	0.69	0.96	27.2	1.16	0.69	8.6
218.0	0.86	1.42	22.0	1.36	097	14.0

- ANCs for first 4 states in ¹⁸O
- 2_2^+ state dominates (p, γ) rate

 2^{+}

0

4

 2^{+}

 0^{+}

 ^{18}O

Direct Reaction with Exotic Beams

4.45

3.92

3.63

3.56

1.98

10'

10⁰

101

10⁻²

10⁻³

10'

10⁰

10⁻²

10

5

do/dΩ [mb/sr]

Ò

da/dΩ [mb/sr]

 $^{17}F(p,\gamma)^{18}Ne$

	\mathbf{J}^{π}	Proton	18	O	¹⁸ Ne	
	Orbital	B.E. [MeV]	$C_{\ell j}^2 ~ [\mathrm{fm}^{-1}]$	B.E. [MeV]	$C_{\ell j}^2 ~ [\mathrm{fm}^{-1}]$	
	0_{1}^{+}	d _{5/2}	8.04	7.33 ± 0.73	3.92	10.76 ± 0.97
	2_{1}^{+}	d _{5/2}	6.06	2.06 ± 0.21	2.04	2.17 ± 0.24
		S _{1/2}		6.55 ± 0.69		14.29 ± 1.71
	4_{1}^{+}	d _{5/2}	4.48	1.05 ± 0.11	0.54	2.17 ± 0.22
	2^{+}_{2}	d _{5/2}	4.12	0.49 ± 0.06	0.31	2.69 ± 0.32
ction Reams		$s_{1/2}$		4.47 ± 0.54		127 ± 17

with Exotic

Future direction: extension to (n,γ) direct capture

Test case: ¹⁴C(n,γ)¹⁵C

- ANC from breakup of ${}^{15}C \rightarrow {}^{14}C + n$
- Compare to ¹³C(¹⁴C,¹⁵C)¹²C at TAMU
- Determine **spectroscopic factor**
 - d(¹⁴C,p)¹⁵C in inverse kinematics 12 MeV/A
 - compare to ¹⁴C(d,p)¹⁵C from Rez 24 MeV
 - higher energy ¹⁴C(d,p)¹⁵C with K150 beam
- Use ANC to fix exterior part of cross section
- With **ANC**, determine ¹⁴C(n,γ)¹⁵C direct capture
- Compare **spectroscopic factor** to expectations
- Use **spectroscopic factors** for s-wave d.c.

TAMU Upgrade Project

- Further develop **RIB** capability
- Produce accelerated RIB's at intermediate energies

TAMU Upgrade Project

- Stage
 - commission K150(88") cyclotron
 - ECR source injection
 - commission beam lines to existing apparatus
- Stage II
 - isotope production stations completed
 - production of rare isotopes
- Stage III
 - K500 acceleration of rare isotope beams

Facility with K150 Beam Lines

Collaborators

- TAMU: T. Al-Abdullah, A. Azhari, H. Clark, C. Gagliardi, C. Fu, Y.-W. Lui, G. Tabacaru, X. Tang, L. Trache, A. Zhanov (Mukhamedzhanov)
- INP (Czech Republic): P. Bem, V. Burjan, V. Kroha, E. Simeckova, J. Vincour
- IAP (Romania): F. Carstoiu

